added individual eps-greedy for VDN

This commit is contained in:
romue 2021-06-29 16:40:30 +02:00
parent 456e48f2e0
commit 87f762c78c
3 changed files with 272 additions and 54 deletions

View File

@ -6,21 +6,6 @@ import torch
import torch.nn as nn
class BaseLearner:
def __init__(self, env, n_agents, lr):
self.env = env
self.n_agents = n_agents
self.lr = lr
self.device = 'cpu'
def to(self, device):
self.device = device
for attr, value in self.__dict__.items():
if isinstance(value, nn.Module):
value = value.to(self.device)
return self
class Experience(NamedTuple):
# can be use for a single (s_t, a, r s_{t+1}) tuple
# or for a batch of tuples
@ -29,6 +14,84 @@ class Experience(NamedTuple):
action: np.ndarray
reward: Union[float, np.ndarray]
done : Union[bool, np.ndarray]
episode: int = -1
class BaseLearner:
def __init__(self, env, n_agents=1, train_every=('step', 4), n_grad_steps=1):
assert train_every[0] in ['step', 'episode'], 'train_every[0] must be one of ["step", "episode"]'
self.env = env
self.n_agents = n_agents
self.n_grad_steps = n_grad_steps
self.train_every = train_every
self.device = 'cpu'
self.n_updates = 0
self.step = 0
self.episode_step = 0
self.episode = 0
self.running_reward = deque(maxlen=5)
def to(self, device):
self.device = device
for attr, value in self.__dict__.items():
if isinstance(value, nn.Module):
value = value.to(self.device)
return self
def get_action(self, obs) -> Union[int, np.ndarray]:
pass
def on_new_experience(self, experience):
pass
def on_step_end(self, n_steps):
pass
def on_episode_end(self, n_steps):
pass
def train(self):
pass
def learn(self, n_steps):
train_type, train_freq = self.train_every
while self.step < n_steps:
obs, done = self.env.reset(), False
total_reward = 0
self.episode_step = 0
while not done:
action = self.get_action(obs)
next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0])
experience = Experience(observation=obs, next_observation=next_obs,
action=action, reward=reward,
done=done, episode=self.episode) # do we really need to copy?
self.on_new_experience(experience)
# end of step routine
obs = next_obs
total_reward += reward
self.step += 1
self.episode_step += 1
self.on_step_end(n_steps)
if train_type == 'step' and (self.step % train_freq == 0):
self.train()
self.n_updates += 1
self.on_episode_end(n_steps)
if train_type == 'episode' and (self.episode % train_freq == 0):
self.train()
self.n_updates += 1
self.running_reward.append(total_reward)
self.episode += 1
try:
if self.step % 10 == 0:
print(
f'Step: {self.step} ({(self.step / n_steps) * 100:.2f}%)\tRunning reward: {sum(list(self.running_reward)) / len(self.running_reward):.2f}\t'
f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss)) / len(self.running_loss):.4f}\tUpdates:{self.n_updates}')
except Exception as e:
pass
class BaseBuffer:
@ -60,7 +123,7 @@ def soft_update(local_model, target_model, tau):
def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity'):
activations = {'elu': nn.ELU, 'relu': nn.ReLU,
activations = {'elu': nn.ELU, 'relu': nn.ReLU, 'sigmoid': nn.Sigmoid,
'leaky_relu': nn.LeakyReLU, 'tanh': nn.Tanh,
'gelu': nn.GELU, 'identity': nn.Identity}
layers = [('Flatten', nn.Flatten())] if flatten else []
@ -71,7 +134,6 @@ def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity')
return nn.Sequential(OrderedDict(layers))
class BaseDQN(nn.Module):
def __init__(self, dims=[3*5*5, 64, 64, 9]):
super(BaseDQN, self).__init__()

View File

@ -11,9 +11,9 @@ from algorithms.common import BaseLearner, BaseBuffer, soft_update, Experience
class QLearner(BaseLearner):
def __init__(self, q_net, target_q_net, env, buffer_size=1e5, target_update=3000, eps_end=0.05, n_agents=1,
gamma=0.99, train_every_n_steps=4, n_grad_steps=1, tau=1.0, max_grad_norm=10, weight_decay=1e-2,
gamma=0.99, train_every=('step', 4), n_grad_steps=1, tau=1.0, max_grad_norm=10, weight_decay=1e-2,
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0, eps_start=1):
super(QLearner, self).__init__(env, n_agents, lr)
super(QLearner, self).__init__(env, n_agents, train_every, n_grad_steps)
self.q_net = q_net
self.target_q_net = target_q_net
self.target_q_net.eval()
@ -26,11 +26,10 @@ class QLearner(BaseLearner):
self.exploration_fraction = exploration_fraction
self.batch_size = batch_size
self.gamma = gamma
self.train_every_n_steps = train_every_n_steps
self.n_grad_steps = n_grad_steps
self.tau = tau
self.reg_weight = reg_weight
self.weight_decay = weight_decay
self.lr = lr
self.optimizer = torch.optim.AdamW(self.q_net.parameters(),
lr=self.lr,
weight_decay=self.weight_decay)
@ -64,37 +63,15 @@ class QLearner(BaseLearner):
action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)])
return action
def learn(self, n_steps):
step = 0
while step < n_steps:
obs, done = self.env.reset(), False
total_reward = 0
while not done:
action = self.get_action(obs)
next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0])
experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done) # do we really need to copy?
def on_new_experience(self, experience):
self.buffer.add(experience)
# end of step routine
obs = next_obs
step += 1
total_reward += reward
self.anneal_eps(step, n_steps)
if step % self.train_every_n_steps == 0:
self.train()
self.n_updates += 1
if step % self.target_update == 0:
def on_step_end(self, n_steps):
self.anneal_eps(self.step, n_steps)
if self.step % self.target_update == 0:
print('UPDATE')
soft_update(self.q_net, self.target_q_net, tau=self.tau)
self.running_reward.append(total_reward)
if step % 10 == 0:
print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t'
f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}\tUpdates:{self.n_updates}')
def _training_routine(self, obs, next_obs, action):
current_q_values = self.q_net(obs)
current_q_values = torch.gather(current_q_values, dim=-1, index=action)
@ -113,7 +90,7 @@ class QLearner(BaseLearner):
def train(self):
if len(self.buffer) < self.batch_size: return
for _ in range(self.n_grad_steps):
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
experience = self.buffer.sample(self.batch_size, cer=self.train_every[-1])
pred_q, target_q_raw = self._training_routine(experience.observation,
experience.next_observation,
experience.action)
@ -127,8 +104,9 @@ if __name__ == '__main__':
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
from algorithms.common import BaseDDQN
from algorithms.vdn_learner import VDNLearner
from algorithms.udr_learner import UDRLearner
N_AGENTS = 2
N_AGENTS = 1
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
@ -138,7 +116,7 @@ if __name__ == '__main__':
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
dqn, target_dqn = BaseDDQN(), BaseDDQN()
learner = VDNLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
learner = QLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
train_every=('step', 4), eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
#learner.save(Path(__file__).parent / 'test' / 'testexperiment1337')
learner.learn(100000)

178
algorithms/udr_learner.py Normal file
View File

@ -0,0 +1,178 @@
import random
from typing import Union, List
from collections import deque
import numpy as np
import torch
import torch.nn as nn
from algorithms.common import BaseBuffer, Experience, BaseLearner, BaseDQN, mlp_maker
from collections import defaultdict
class UDRLBuffer(BaseBuffer):
def __init__(self, size):
super(UDRLBuffer, self).__init__(0)
self.experience = defaultdict(list)
self.size = size
def add(self, experience):
self.experience[experience.episode].append(experience)
if len(self.experience) > self.size:
self.sort_and_prune()
def select_time_steps(self, episode: List[Experience]):
T = len(episode) # max horizon
t1 = random.randint(0, T - 1)
t2 = random.randint(t1 + 1, T)
return t1, t2, T
def sort_and_prune(self):
scores = []
for k, episode_experience in self.experience.items():
r = sum([e.reward for e in episode_experience])
scores.append((r, k))
sorted_scores = sorted(scores, reverse=True)
return sorted_scores
def sample(self, batch_size, cer=0):
random_episode_keys = random.choices(list(self.experience.keys()), k=batch_size)
lsts = (obs, desired_rewards, horizons, actions) = [], [], [], []
for ek in random_episode_keys:
episode = self.experience[ek]
t1, t2, T = self.select_time_steps(episode)
t2 = T # TODO only good for episodic envs
observation = episode[t1].observation
desired_reward = sum([experience.reward for experience in episode[t1:t2]])
horizon = t2 - t1
action = episode[t1].action
for lst, val in zip(lsts, [observation, desired_reward, horizon, action]):
lst.append(val)
return (torch.stack([torch.from_numpy(o) for o in obs], 0).float(),
torch.tensor(desired_rewards).view(-1, 1).float(),
torch.tensor(horizons).view(-1, 1).float(),
torch.tensor(actions))
class UDRLearner(BaseLearner):
# Upside Down Reinforcement Learner
def __init__(self, env, desired_reward, desired_horizon,
behavior_fn=None, buffer_size=100, n_warm_up_episodes=8, best_x=20,
batch_size=128, lr=1e-3, n_agents=1, train_every=('episode', 4), n_grad_steps=1):
super(UDRLearner, self).__init__(env, n_agents, train_every, n_grad_steps)
assert self.n_agents == 1, 'UDRL currently only supports single agent training'
self.behavior_fn = behavior_fn
self.buffer_size = buffer_size
self.n_warm_up_episodes = n_warm_up_episodes
self.buffer = UDRLBuffer(buffer_size)
self.batch_size = batch_size
self.mode = 'train'
self.best_x = best_x
self.desired_reward = desired_reward
self.desired_horizon = desired_horizon
self.lr = lr
self.optimizer = torch.optim.AdamW(self.behavior_fn.parameters(), lr=lr)
self.running_loss = deque(maxlen=self.n_grad_steps*5)
def sample_exploratory_commands(self):
top_x = self.buffer.sort_and_prune()[:self.best_x]
# The exploratory desired horizon dh0 is set to the mean of the lengths of the selected episodes
new_desired_horizon = np.mean([len(self.buffer.experience[k]) for _, k in top_x])
# save all top_X cumulative returns in a list
returns = [r for r, _ in top_x]
# from these returns calc the mean and std
mean_returns = np.mean([r for r, _ in top_x])
std_returns = np.std(returns)
# sample desired reward from a uniform distribution given the mean and the std
new_desired_reward = np.random.uniform(mean_returns, mean_returns + std_returns)
self.exploratory_commands = (new_desired_reward, new_desired_horizon)
return torch.tensor([[new_desired_reward]]).float(), torch.tensor([[new_desired_horizon]]).float()
def on_new_experience(self, experience):
self.buffer.add(experience)
self.desired_reward = self.desired_reward - torch.tensor(experience.reward).float().view(1, 1)
def on_step_end(self, n_steps):
one = torch.tensor([1.]).float().view(1, 1)
self.desired_horizon -= one
self.desired_horizon = self.desired_horizon if self.desired_horizon >= 1. else one
def on_episode_end(self, n_steps):
self.desired_reward, self.desired_horizon = self.sample_exploratory_commands()
def get_action(self, obs) -> Union[int, np.ndarray]:
o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs)
bf_out = self.behavior_fn(o.float(), self.desired_reward, self.desired_horizon)
dist = torch.distributions.Categorical(bf_out)
sample = dist.sample()
return [sample.item()]#[self.env.action_space.sample()]
def _backprop_loss(self, loss):
# log loss
self.running_loss.append(loss.item())
# Optimize the model
self.optimizer.zero_grad()
loss.backward()
#torch.nn.utils.clip_grad_norm_(self.behavior_fn.parameters(), 10)
self.optimizer.step()
def train(self):
if len(self.buffer) < self.n_warm_up_episodes: return
for _ in range(self.n_grad_steps):
experience = self.buffer.sample(self.batch_size)
bf_out = self.behavior_fn(*experience[:3])
labels = experience[-1]
#print(labels.shape)
loss = nn.CrossEntropyLoss()(bf_out, labels.squeeze())
mean_entropy = torch.distributions.Categorical(bf_out).entropy().mean()
self._backprop_loss(loss - 0.03*mean_entropy)
print(f'Running loss: {np.mean(list(self.running_loss)):.3f}\tRunning reward: {np.mean(self.running_reward):.2f}'
f'\td_r: {self.desired_reward.item():.2f}\ttd_h: {self.desired_horizon.item()}')
class BF(BaseDQN):
def __init__(self, dims=[5*5*3, 64]):
super(BF, self).__init__(dims)
self.net = mlp_maker(dims, activation_last='identity')
self.command_net = mlp_maker([2, 64], activation_last='sigmoid')
self.common_branch = mlp_maker([64, 64, 64, 9])
def forward(self, observation, desired_reward, horizon):
command = torch.cat((desired_reward*(0.02), horizon*(0.01)), dim=-1)
obs_out = self.net(torch.flatten(observation, start_dim=1))
command_out = self.command_net(command)
combined = obs_out*command_out
out = self.common_branch(combined)
return torch.softmax(out, -1)
if __name__ == '__main__':
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
from algorithms.common import BaseDDQN
from algorithms.vdn_learner import VDNLearner
N_AGENTS = 1
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
move_props = MovementProperties(allow_diagonal_movement=True,
allow_square_movement=True,
allow_no_op=False)
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2,
max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
bf = BF()
desired_reward = torch.tensor([200.]).view(1, 1).float()
desired_horizon = torch.tensor([400.]).view(1, 1).float()
learner = UDRLearner(env, behavior_fn=bf,
train_every=('episode', 2),
buffer_size=40,
best_x=10,
lr=1e-3,
batch_size=64,
n_warm_up_episodes=12,
n_grad_steps=4,
desired_reward=desired_reward,
desired_horizon=desired_horizon)
#learner.save(Path(__file__).parent / 'test' / 'testexperiment1337')
learner.learn(500000)