mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-06-21 11:21:35 +02:00
recoder adaption
This commit is contained in:
316
studies/e_1.py
316
studies/e_1.py
@ -1,130 +1,234 @@
|
||||
import itertools
|
||||
import random
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
try:
|
||||
# noinspection PyUnboundLocalVariable
|
||||
if __package__ is None:
|
||||
DIR = Path(__file__).resolve().parent
|
||||
sys.path.insert(0, str(DIR.parent))
|
||||
__package__ = DIR.name
|
||||
else:
|
||||
DIR = None
|
||||
except NameError:
|
||||
DIR = None
|
||||
pass
|
||||
|
||||
import time
|
||||
|
||||
|
||||
import simplejson
|
||||
from stable_baselines3 import DQN, PPO, A2C
|
||||
from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
|
||||
from environments import helpers as h
|
||||
from environments.factory.factory_dirt import DirtProperties, DirtFactory
|
||||
from environments.factory.factory_dirt_item import DirtItemFactory
|
||||
from environments.factory.factory_item import ItemProperties, ItemFactory
|
||||
from environments.logging.monitor import MonitorCallback
|
||||
from environments.utility_classes import MovementProperties
|
||||
from plotting.compare_runs import compare_seed_runs, compare_model_runs, compare_all_parameter_runs
|
||||
|
||||
if __name__ == '__main__':
|
||||
"""
|
||||
In this studie, we want to explore the macro behaviour of multi agents which are trained on the same task,
|
||||
but never saw each other in training.
|
||||
Those agents learned
|
||||
|
||||
|
||||
We start with training a single policy on a single task (dirt cleanup / item pickup).
|
||||
Then multiple agent equipped with the same policy are deployed in the same environment.
|
||||
|
||||
There are further distinctions to be made:
|
||||
|
||||
1. No Observation - ['no_obs']:
|
||||
- Agent do not see each other but their consequences of their combined actions
|
||||
- Agents can collide
|
||||
|
||||
2. Observation in seperate slice - [['seperate_0'], ['seperate_1'], ['seperate_N']]:
|
||||
- Agents see other entitys on a seperate slice
|
||||
- This slice has been filled with $0 | 1 | \mathbb{N}(0, 1)$
|
||||
-- Depending ob the fill value, agents will react diffently
|
||||
-> TODO: Test this!
|
||||
|
||||
3. Observation in level slice - ['in_lvl_obs']:
|
||||
- This tells the agent to treat other agents as obstacle.
|
||||
- However, the state space is altered since moving obstacles are not part the original agent observation.
|
||||
- We are out of distribution.
|
||||
"""
|
||||
# Define a global studi save path
|
||||
start_time = 1631709932 # int(time.time())
|
||||
study_root_path = (Path('..') if not DIR else Path()) / 'study_out' / f'{Path(__file__).stem}_{start_time}'
|
||||
|
||||
"""
|
||||
In this studie, we want to explore the macro behaviour of multi agents which are trained on the same task,
|
||||
but never saw each other in training.
|
||||
Those agents learned
|
||||
|
||||
|
||||
def bundle_model(model_class):
|
||||
if model_class.__class__.__name__ in ["PPO", "A2C"]:
|
||||
kwargs = dict(ent_coef=0.01)
|
||||
elif model_class.__class__.__name__ in ["RegDQN", "DQN", "QRDQN"]:
|
||||
kwargs = dict(buffer_size=50000,
|
||||
learning_starts=64,
|
||||
batch_size=64,
|
||||
target_update_interval=5000,
|
||||
exploration_fraction=0.25,
|
||||
exploration_final_eps=0.025
|
||||
)
|
||||
return lambda: model_class(kwargs)
|
||||
We start with training a single policy on a single task (dirt cleanup / item pickup).
|
||||
Then multiple agent equipped with the same policy are deployed in the same environment.
|
||||
|
||||
There are further distinctions to be made:
|
||||
|
||||
1. No Observation - ['no_obs']:
|
||||
- Agent do not see each other but their consequences of their combined actions
|
||||
- Agents can collide
|
||||
|
||||
2. Observation in seperate slice - [['seperate_0'], ['seperate_1'], ['seperate_N']]:
|
||||
- Agents see other entitys on a seperate slice
|
||||
- This slice has been filled with $0 | 1 | \mathbb{N}(0, 1)$
|
||||
-- Depending ob the fill value, agents will react diffently
|
||||
-> TODO: Test this!
|
||||
|
||||
3. Observation in level slice - ['in_lvl_obs']:
|
||||
- This tells the agent to treat other agents as obstacle.
|
||||
- However, the state space is altered since moving obstacles are not part the original agent observation.
|
||||
- We are out of distribution.
|
||||
"""
|
||||
|
||||
|
||||
def policy_model_kwargs():
|
||||
return dict(ent_coef=0.01)
|
||||
|
||||
|
||||
def dqn_model_kwargs():
|
||||
return dict(buffer_size=50000,
|
||||
learning_starts=64,
|
||||
batch_size=64,
|
||||
target_update_interval=5000,
|
||||
exploration_fraction=0.25,
|
||||
exploration_final_eps=0.025
|
||||
)
|
||||
|
||||
|
||||
def encapsule_env_factory(env_fctry, env_kwrgs):
|
||||
|
||||
def _init():
|
||||
with env_fctry(**env_kwrgs) as init_env:
|
||||
return init_env
|
||||
|
||||
return _init
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Define a global studi save path
|
||||
study_root_path = Path(Path(__file__).stem) / 'out'
|
||||
train_steps = 5e5
|
||||
|
||||
# TODO: Define Global Env Parameters
|
||||
factory_kwargs = {
|
||||
|
||||
|
||||
}
|
||||
|
||||
# TODO: Define global model parameters
|
||||
|
||||
|
||||
# TODO: Define parameters for both envs
|
||||
dirt_props = DirtProperties()
|
||||
item_props = ItemProperties()
|
||||
# Define Global Env Parameters
|
||||
# Define properties object parameters
|
||||
move_props = MovementProperties(allow_diagonal_movement=True,
|
||||
allow_square_movement=True,
|
||||
allow_no_op=False)
|
||||
dirt_props = DirtProperties(clean_amount=2, gain_amount=0.1, max_global_amount=20,
|
||||
max_local_amount=1, spawn_frequency=15, max_spawn_ratio=0.05,
|
||||
dirt_smear_amount=0.0, agent_can_interact=True)
|
||||
item_props = ItemProperties(n_items=10, agent_can_interact=True,
|
||||
spawn_frequency=30, n_drop_off_locations=2,
|
||||
max_agent_inventory_capacity=15)
|
||||
factory_kwargs = dict(n_agents=1,
|
||||
pomdp_r=2, max_steps=400, parse_doors=False,
|
||||
level_name='rooms', frames_to_stack=3,
|
||||
omit_agent_in_obs=True, combin_agent_obs=True, record_episodes=False,
|
||||
cast_shadows=True, doors_have_area=False, verbose=False,
|
||||
movement_properties=move_props
|
||||
)
|
||||
|
||||
# Bundle both environments with global kwargs and parameters
|
||||
env_bundles = [lambda: ('dirt', DirtFactory(factory_kwargs, dirt_properties=dirt_props)),
|
||||
lambda: ('item', ItemFactory(factory_kwargs, item_properties=item_props))]
|
||||
env_map = {'dirt': (DirtFactory, dict(dirt_properties=dirt_props, **factory_kwargs)),
|
||||
'item': (ItemFactory, dict(item_properties=item_props, **factory_kwargs)),
|
||||
'itemdirt': (DirtItemFactory, dict(dirt_properties=dirt_props, item_properties=item_props,
|
||||
**factory_kwargs))}
|
||||
env_names = list(env_map.keys())
|
||||
|
||||
# Define parameter versions according with #1,2[1,0,N],3
|
||||
observation_modes = ['no_obs', 'seperate_0', 'seperate_1', 'seperate_N', 'in_lvl_obs']
|
||||
|
||||
# Define RL-Models
|
||||
model_bundles = [bundle_model(model) for model in [A2C, PPO, DQN]]
|
||||
|
||||
# Zip parameters, parameter versions, Env Classes and models
|
||||
combinations = itertools.product(model_bundles, env_bundles)
|
||||
observation_modes = {
|
||||
# Fill-value = 0
|
||||
'seperate_0': dict(additional_env_kwargs=dict(additional_agent_placeholder=0)),
|
||||
# Fill-value = 1
|
||||
'seperate_1': dict(additional_env_kwargs=dict(additional_agent_placeholder=1)),
|
||||
# Fill-value = N(0, 1)
|
||||
'seperate_N': dict(additional_env_kwargs=dict(additional_agent_placeholder='N')),
|
||||
# Further Adjustments are done post-training
|
||||
'in_lvl_obs': dict(post_training_kwargs=dict(other_agent_obs='in_lvl')),
|
||||
# No further adjustment needed
|
||||
'no_obs': None
|
||||
}
|
||||
|
||||
# Train starts here ############################################################
|
||||
# Build Major Loop
|
||||
for model, (env_identifier, env_bundle) in combinations:
|
||||
for observation_mode in observation_modes:
|
||||
# TODO: Create an identifier, which is unique for every combination and easy to read in filesystem
|
||||
identifier = f'{model.name}_{observation_mode}_{env_identifier}'
|
||||
# Train each combination per seed
|
||||
for seed in range(3):
|
||||
# TODO: Output folder
|
||||
# TODO: Monitor Init
|
||||
# TODO: Env Init
|
||||
# TODO: Model Init
|
||||
# TODO: Model train
|
||||
# TODO: Model save
|
||||
pass
|
||||
# TODO: Seed Compare Plot
|
||||
# Build Major Loop parameters, parameter versions, Env Classes and models
|
||||
if False:
|
||||
for observation_mode in observation_modes.keys():
|
||||
for env_name in env_names:
|
||||
for model_cls in h.MODEL_MAP.values():
|
||||
# Create an identifier, which is unique for every combination and easy to read in filesystem
|
||||
identifier = f'{model_cls.__name__}_{start_time}'
|
||||
# Train each combination per seed
|
||||
combination_path = study_root_path / observation_mode / env_name / identifier
|
||||
env_class, env_kwargs = env_map[env_name]
|
||||
# Retrieve and set the observation mode specific env parameters
|
||||
if observation_mode_kwargs := observation_modes.get(observation_mode, None):
|
||||
if additional_env_kwargs := observation_mode_kwargs.get("additional_env_kwargs", None):
|
||||
env_kwargs.update(additional_env_kwargs)
|
||||
for seed in range(5):
|
||||
env_kwargs.update(env_seed=seed)
|
||||
# Output folder
|
||||
seed_path = combination_path / f'{str(seed)}_{identifier}'
|
||||
seed_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Monitor Init
|
||||
callbacks = [MonitorCallback(seed_path / 'monitor.pick')]
|
||||
|
||||
# Env Init & Model kwargs definition
|
||||
if model_cls.__name__ in ["PPO", "A2C"]:
|
||||
env = env_class(**env_kwargs)
|
||||
|
||||
# env = SubprocVecEnv([encapsule_env_factory(env_class, env_kwargs) for _ in range(1)],
|
||||
# start_method="spawn")
|
||||
model_kwargs = policy_model_kwargs()
|
||||
|
||||
elif model_cls.__name__ in ["RegDQN", "DQN", "QRDQN"]:
|
||||
env = env_class(**env_kwargs)
|
||||
model_kwargs = dqn_model_kwargs()
|
||||
|
||||
else:
|
||||
raise NameError(f'The model "{model_cls.__name__}" has the wrong name.')
|
||||
|
||||
param_path = seed_path / f'env_params.json'
|
||||
try:
|
||||
env.env_method('save_params', param_path)
|
||||
except AttributeError:
|
||||
env.save_params(param_path)
|
||||
|
||||
# Model Init
|
||||
model = model_cls("MlpPolicy", env, verbose=1, seed=seed, device='cpu', **model_kwargs)
|
||||
|
||||
# Model train
|
||||
model.learn(total_timesteps=int(train_steps), callback=callbacks)
|
||||
|
||||
# Model save
|
||||
save_path = seed_path / f'model.zip'
|
||||
model.save(save_path)
|
||||
pass
|
||||
# Compare perfoormance runs, for each seed within a model
|
||||
compare_seed_runs(combination_path)
|
||||
# Compare performance runs, for each model
|
||||
# FIXME: Check THIS!!!!
|
||||
compare_model_runs(study_root_path / observation_mode / env_name, f'{start_time}', 'step_reward')
|
||||
# Train ends here ############################################################
|
||||
|
||||
# Evaluation starts here #####################################################
|
||||
# Iterate Observation Modes
|
||||
for observation_mode in observation_modes:
|
||||
# TODO: For trained policy in study_root_path / identifier
|
||||
for policy_group in (x for x in study_root_path.iterdir() if x.is_dir()):
|
||||
# TODO: Pick random seed or iterate over available seeds
|
||||
policy_seed = next((y for y in study_root_path.iterdir() if y.is_dir()))
|
||||
# TODO: retrieve model class
|
||||
# TODO: Load both agents
|
||||
models = []
|
||||
# TODO: Evaluation Loop for i in range(100) Episodes
|
||||
for episode in range(100):
|
||||
with next(policy_seed.glob('*.yaml')).open('r') as f:
|
||||
env_kwargs = simplejson.load(f)
|
||||
# TODO: Monitor Init
|
||||
env = None # TODO: Init Env
|
||||
for step in range(400):
|
||||
random_actions = [[random.randint(0, env.n_actions) for _ in range(len(models))] for _ in range(200)]
|
||||
env_state = env.reset()
|
||||
rew = 0
|
||||
for agent_i_action in random_actions:
|
||||
env_state, step_r, done_bool, info_obj = env.step(agent_i_action)
|
||||
rew += step_r
|
||||
if done_bool:
|
||||
break
|
||||
print(f'Factory run {episode} done, reward is:\n {rew}')
|
||||
# TODO: Plotting
|
||||
|
||||
pass
|
||||
for observation_mode in observation_modes:
|
||||
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == observation_mode)
|
||||
# For trained policy in study_root_path / identifier
|
||||
for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]:
|
||||
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
|
||||
# TODO: Pick random seed or iterate over available seeds
|
||||
# First seed path version
|
||||
# seed_path = next((y for y in policy_path.iterdir() if y.is_dir()))
|
||||
# Iteration
|
||||
for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
|
||||
# retrieve model class
|
||||
for model_cls in (val for key, val in h.MODEL_MAP.items() if key in policy_path.name):
|
||||
# Load both agents
|
||||
models = [model_cls.load(seed_path / 'model.zip') for _ in range(2)]
|
||||
# Load old env kwargs
|
||||
with next(seed_path.glob('*.json')).open('r') as f:
|
||||
env_kwargs = simplejson.load(f)
|
||||
env_kwargs.update(n_agents=2, additional_agent_placeholder=None,
|
||||
**observation_modes[observation_mode].get('post_training_env_kwargs', {}))
|
||||
|
||||
# Monitor Init
|
||||
with MonitorCallback(filepath=seed_path / f'e_1_monitor.pick') as monitor:
|
||||
# Init Env
|
||||
env = env_map[env_path.name][0](**env_kwargs)
|
||||
# Evaluation Loop for i in range(n Episodes)
|
||||
for episode in range(50):
|
||||
obs = env.reset()
|
||||
rew, done_bool = 0, False
|
||||
while not done_bool:
|
||||
actions = [model.predict(obs[i], deterministic=False)[0]
|
||||
for i, model in enumerate(models)]
|
||||
env_state, step_r, done_bool, info_obj = env.step(actions)
|
||||
monitor.read_info(0, info_obj)
|
||||
rew += step_r
|
||||
if done_bool:
|
||||
monitor.read_done(0, done_bool)
|
||||
break
|
||||
print(f'Factory run {episode} done, reward is:\n {rew}')
|
||||
# Eval monitor outputs are automatically stored by the monitor object
|
||||
|
||||
# TODO: Plotting
|
||||
pass
|
||||
|
Reference in New Issue
Block a user