recoder adaption

This commit is contained in:
Steffen Illium
2021-10-04 17:53:19 +02:00
parent 4c21a0af7c
commit 696e520862
21 changed files with 665 additions and 380 deletions

View File

@@ -3,10 +3,10 @@ from pathlib import Path
import yaml
from natsort import natsorted
from stable_baselines3.common.evaluation import evaluate_policy
from environments import helpers as h
from environments.factory.factory_dirt import DirtProperties, DirtFactory
from environments.factory.factory_item import ItemProperties, ItemFactory
from environments.factory.factory_dirt_item import DirtItemFactory
from environments.logging.recorder import RecorderCallback
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
@@ -14,27 +14,35 @@ warnings.filterwarnings('ignore', category=UserWarning)
if __name__ == '__main__':
model_name = 'DQN_1631092016'
model_name = 'PPO_1631187073'
run_id = 0
seed = 69
out_path = Path(__file__).parent / 'debug_out'
out_path = Path(__file__).parent / 'study_out' / 'e_1_1631709932'/ 'no_obs' / 'itemdirt'/'A2C_1631709932' / '0_A2C_1631709932'
model_path = out_path / model_name
with (model_path / f'env_{model_name}.yaml').open('r') as f:
with (out_path / f'env_params.json').open('r') as f:
env_kwargs = yaml.load(f, Loader=yaml.FullLoader)
env_kwargs.update(verbose=True, env_seed=seed)
if False:
env_kwargs.update(dirt_properties=DirtProperties(clean_amount=1, gain_amount=0.1, max_global_amount=20,
max_local_amount=1, spawn_frequency=5, max_spawn_ratio=0.05,
dirt_smear_amount=0.5),
combin_agent_slices_in_obs=True, omit_agent_slice_in_obs=True)
with ItemFactory(**env_kwargs) as env:
env_kwargs.update(verbose=False, env_seed=seed, record_episodes=True)
# Edit THIS:
env.seed(seed)
model_files = list(natsorted((model_path / f'{run_id}_{model_name}').rglob('model_*.zip')))
this_model = model_files[0]
model_cls = next(val for key, val in model_map.items() if key in model_name)
model = model_cls.load(this_model)
evaluation_result = evaluate_policy(model, env, n_eval_episodes=100, deterministic=False, render=True)
print(evaluation_result)
this_model = out_path / 'model.zip'
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in model_name)
model = model_cls.load(this_model)
with RecorderCallback(filepath=Path() / 'recorder_out.json') as recorder:
# Init Env
with DirtItemFactory(**env_kwargs) as env:
# Evaluation Loop for i in range(n Episodes)
for episode in range(5):
obs = env.reset()
rew, done_bool = 0, False
while not done_bool:
action = model.predict(obs, deterministic=False)[0]
env_state, step_r, done_bool, info_obj = env.step(action[0])
recorder.read_info(0, info_obj)
rew += step_r
if done_bool:
recorder.read_done(0, done_bool)
break
print(f'Factory run {episode} done, reward is:\n {rew}')
print('all done')