mirror of
				https://github.com/illiumst/marl-factory-grid.git
				synced 2025-10-31 12:37:27 +01:00 
			
		
		
		
	added own dqn
This commit is contained in:
		
							
								
								
									
										166
									
								
								algorithms/_base.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										166
									
								
								algorithms/_base.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,166 @@ | ||||
| from typing import Tuple, NamedTuple | ||||
| from collections import namedtuple, deque | ||||
| import numpy as np | ||||
| import random | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from stable_baselines3.common.utils import polyak_update | ||||
|  | ||||
|  | ||||
| class Experience(NamedTuple): | ||||
|     observation: np.ndarray | ||||
|     next_observation: np.ndarray | ||||
|     action:      int | ||||
|     reward:      float | ||||
|     done  :      bool | ||||
|     priority:    float = 1 | ||||
|     info  :      dict = {} | ||||
|  | ||||
|  | ||||
| class BaseBuffer: | ||||
|     def __init__(self, size: int): | ||||
|         self.size = size | ||||
|         self.experience = deque(maxlen=size) | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self.experience) | ||||
|  | ||||
|     def add(self, experience): | ||||
|         self.experience.append(experience) | ||||
|  | ||||
|     def sample(self, k): | ||||
|         sample = random.choices(self.experience, k=k) | ||||
|         return sample | ||||
|  | ||||
|  | ||||
| class PERBuffer(BaseBuffer): | ||||
|     def __init__(self, size, alpha=0.2): | ||||
|         super(PERBuffer, self).__init__(size) | ||||
|         self.alpha = alpha | ||||
|  | ||||
|     def sample(self, k): | ||||
|         pr = [abs(e.priority)**self.alpha for e in self.experience] | ||||
|         pr = np.array(pr) / sum(pr) | ||||
|         idxs = random.choices(range(len(self)), weights=pr, k=k) | ||||
|         pass | ||||
|  | ||||
|  | ||||
| class BaseDQN(nn.Module): | ||||
|     def __init__(self): | ||||
|         super(BaseDQN, self).__init__() | ||||
|         self.net = nn.Sequential( | ||||
|             nn.Linear(5 * 5 * 3, 64), | ||||
|             nn.Tanh(), | ||||
|             nn.Linear(64, 64), | ||||
|             nn.Tanh(), | ||||
|             nn.Linear(64, 5) | ||||
|         ) | ||||
|  | ||||
|     def act(self, x): | ||||
|         with torch.no_grad(): | ||||
|             action = self.net(x.view(x.shape[0], -1)).argmax(-1).item() | ||||
|         return action | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.net(x.view(x.shape[0], -1)) | ||||
|  | ||||
|     def random_action(self): | ||||
|         return random.randrange(0, 5) | ||||
|  | ||||
|  | ||||
| class BaseQlearner: | ||||
|     def __init__(self, q_net, target_q_net, env, buffer, n_steps, target_update, warmup, eps_end, | ||||
|                  gamma=0.99, train_every_n_steps=4, exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0): | ||||
|         self.q_net = q_net | ||||
|         self.target_q_net = target_q_net | ||||
|         self.target_q_net.eval() | ||||
|         self.env = env | ||||
|         self.buffer = buffer | ||||
|         self.n_steps = n_steps | ||||
|         self.target_update = target_update | ||||
|         self.warmup = warmup | ||||
|         self.eps = 1. | ||||
|         self.eps_end = eps_end | ||||
|         self.exploration_fraction = exploration_fraction | ||||
|         self.batch_size = batch_size | ||||
|         self.gamma = gamma | ||||
|         self.train_every_n_steps = train_every_n_steps | ||||
|         self.lr = lr | ||||
|         self.reg_weight = reg_weight | ||||
|         self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=self.lr) | ||||
|         self.device = 'cpu' | ||||
|         self.running_reward = deque(maxlen=10) | ||||
|  | ||||
|     def to(self, device): | ||||
|         self.device = device | ||||
|         return self | ||||
|  | ||||
|     def anneal_eps(self, step): | ||||
|         fraction = min(float(step) / int(self.exploration_fraction*self.n_steps), 1.0) | ||||
|         self.eps = 1 + fraction * (self.eps_end - 1) | ||||
|  | ||||
|     def learn(self): | ||||
|         step = 0 | ||||
|         while step < self.n_steps: | ||||
|             obs, done = self.env.reset(), False | ||||
|             total_reward = 0 | ||||
|             while not done: | ||||
|                 action = self.q_net.random_action() if np.random.rand() < self.eps \ | ||||
|                     else self.q_net.act(torch.from_numpy(obs).unsqueeze(0).float()) | ||||
|                 next_obs, reward, done, info = env.step(action) | ||||
|                 print(action, reward) | ||||
|                 experience = Experience(obs.copy(), next_obs.copy(), action, reward, done)  # do we really need to copy? | ||||
|                 obs = next_obs | ||||
|                 self.buffer.add(experience) | ||||
|  | ||||
|                 # end of step routine | ||||
|                 self.anneal_eps(step) | ||||
|                 step += 1 | ||||
|                 total_reward += reward | ||||
|                 if step % self.train_every_n_steps == 0: | ||||
|                     self.train() | ||||
|                 if step % self.target_update == 0: | ||||
|                     polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1.0) | ||||
|  | ||||
|             self.running_reward.append(total_reward) | ||||
|             if step % 800 == 0: | ||||
|                 print(f'Step: {step} ({(step/self.n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward)}\t eps: {self.eps:.4f}') | ||||
|  | ||||
|     def train(self): | ||||
|         for _ in range(4): | ||||
|             experience = self.buffer.sample(self.batch_size) | ||||
|             obs = torch.stack([torch.from_numpy(e.observation) for e in experience], 0).float() | ||||
|             next_obs = torch.stack([torch.from_numpy(e.next_observation) for e in experience], 0).float() | ||||
|             actions = torch.tensor([e.action for e in experience]).long() | ||||
|             rewards = torch.tensor([e.reward for e in experience]).float() | ||||
|             dones = torch.tensor([e.done for e in experience]).float() | ||||
|  | ||||
|             with torch.no_grad(): | ||||
|                 next_q_values = self.target_q_net(next_obs).max(-1)[0] | ||||
|                 target_q_values = rewards + (1 - dones) * self.gamma * next_q_values | ||||
|  | ||||
|             q_values = self.q_net(obs).gather(-1, actions.unsqueeze(-1)) | ||||
|  | ||||
|             delta = q_values - target_q_values | ||||
|             loss = torch.mean(self.reg_weight * q_values + torch.pow(delta, 2)) | ||||
|  | ||||
|             # Optimize the model | ||||
|             self.optimizer.zero_grad() | ||||
|             loss.backward() | ||||
|             torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), 10) | ||||
|             self.optimizer.step() | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties | ||||
|     dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30, | ||||
|                                 max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05) | ||||
|     move_props = MovementProperties(allow_diagonal_movement=True, | ||||
|                                     allow_square_movement=True, | ||||
|                                     allow_no_op=False) | ||||
|     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=1, pomdp_radius=2, combin_agent_slices_in_obs=True, max_steps=400, omit_agent_slice_in_obs=False) | ||||
|     #print(env.action_space) | ||||
|     dqn, target_dqn = BaseDQN(), BaseDQN() | ||||
|     learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(50000), n_steps=100000, target_update=2000, warmup=1000, train_every_n_steps=1, eps_end=0.025, reg_weight=0.0, exploration_fraction=0.3) | ||||
|     print(learner.learn()) | ||||
		Reference in New Issue
	
	Block a user
	 romue
					romue