added MarlFrameStack and salina stuff

This commit is contained in:
Robert Müller
2021-11-23 14:03:52 +01:00
parent 59484f49c9
commit 5c15bb2ddf
6 changed files with 109 additions and 23 deletions

View File

@ -9,7 +9,12 @@ from pathlib import Path
import numpy as np
from tqdm import tqdm
import time
from algorithms.utils import add_env_props, load_yaml_file, CombineActionsAgent
from algorithms.utils import (
add_env_props,
load_yaml_file,
CombineActionsAgent,
AutoResetGymMultiAgent
)
class A2CAgent(TAgent):
@ -32,8 +37,8 @@ class A2CAgent(TAgent):
def get_obs(self, t):
observation = self.get(("env/env_obs", t))
print(observation.shape)
if self.marl:
observation = observation.permute(2, 0, 1, 3, 4, 5)
observation = observation[self.agent_id]
return observation
@ -57,7 +62,7 @@ if __name__ == '__main__':
# Setup workspace
uid = time.time()
workspace = Workspace()
n_agents = 1
n_agents = 2
# load config
cfg = load_yaml_file(Path(__file__).parent / 'sat_mad.yaml')
@ -65,10 +70,11 @@ if __name__ == '__main__':
cfg['env'].update({'n_agents': n_agents})
# instantiate agent and env
env_agent = AutoResetGymAgent(
env_agent = AutoResetGymMultiAgent(
get_class(cfg['env']),
get_arguments(cfg['env']),
n_envs=1
n_envs=1,
n_agents=n_agents
)
a2c_agents = [instantiate_class({**cfg['agent'],
@ -103,7 +109,8 @@ if __name__ == '__main__':
f'agent{agent_id}_action_probs', "env/reward",
f"agent{agent_id}_action"
]
td = gae(critic, reward, done, 0.99, 0.3)
reward = reward[agent_id]
td = gae(critic, reward, done, 0.98, 0.25)
td_error = td ** 2
critic_loss = td_error.mean()
entropy_loss = Categorical(action_probs).entropy().mean()
@ -118,11 +125,12 @@ if __name__ == '__main__':
optimizer = optimizers[agent_id]
optimizer.zero_grad()
loss.backward()
#torch.nn.utils.clip_grad_norm_(a2c_agents[agent_id].parameters(), 2)
#torch.nn.utils.clip_grad_norm_(a2c_agents[agent_id].parameters(), .5)
optimizer.step()
# Compute the cumulated reward on final_state
creward = workspace["env/cumulated_reward"]
creward = workspace["env/cumulated_reward"]#[agent_id].unsqueeze(-1)
print(creward.shape, done.shape)
creward = creward[done]
if creward.size()[0] > 0:
cum_r = creward.mean().item()

View File

@ -5,21 +5,22 @@ agent:
n_actions: 10
env:
classname: environments.factory.make
env_name: "DirtyFactory-v0"
n_agents: 1
pomdp_r: 2
max_steps: 400
stack_n_frames: 3
classname: environments.factory.make
env_name: "DirtyFactory-v0"
n_agents: 1
pomdp_r: 2
max_steps: 400
stack_n_frames: 3
individual_rewards: True
algorithm:
max_epochs: 1000000
n_envs: 1
n_timesteps: 16
n_timesteps: 10
discount_factor: 0.99
entropy_coef: 0.01
critic_coef: 1.0
gae: 0.3
gae: 0.25
optimizer:
classname: torch.optim.Adam
lr: 0.0003