mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-11-02 13:37:27 +01:00
pomdp
This commit is contained in:
@@ -1,12 +1,11 @@
|
||||
from pathlib import Path
|
||||
from typing import List, Union, Iterable
|
||||
|
||||
import gym
|
||||
from gym import spaces
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
from gym import spaces
|
||||
|
||||
from environments import helpers as h
|
||||
from environments.logging.monitor import FactoryMonitor
|
||||
|
||||
|
||||
class AgentState:
|
||||
@@ -102,16 +101,29 @@ class BaseFactory(gym.Env):
|
||||
|
||||
@property
|
||||
def observation_space(self):
|
||||
return spaces.Box(low=-1, high=1, shape=self.state.shape, dtype=np.float32)
|
||||
if self.pomdp_size:
|
||||
return spaces.Box(low=0, high=1, shape=(self.state.shape[0], self.pomdp_size,
|
||||
self.pomdp_size), dtype=np.float32)
|
||||
else:
|
||||
space = spaces.Box(low=0, high=1, shape=self.state.shape, dtype=np.float32)
|
||||
# space = spaces.MultiBinary(np.prod(self.state.shape))
|
||||
# space = spaces.Dict({
|
||||
# 'level': spaces.MultiBinary(np.prod(self.state[0].shape)),
|
||||
# 'agent_n': spaces.Discrete(np.prod(self.state[1].shape)),
|
||||
# 'dirt': spaces.Box(low=0, high=1, shape=self.state[2].shape, dtype=np.float32)
|
||||
# })
|
||||
return space
|
||||
|
||||
@property
|
||||
def movement_actions(self):
|
||||
return self._actions.movement_actions
|
||||
|
||||
|
||||
def __init__(self, level='simple', n_agents=1, max_steps=int(2e2), **kwargs):
|
||||
def __init__(self, level='simple', n_agents=1, max_steps=int(5e2), pomdp_size: Union[None, int] = None, **kwargs):
|
||||
self.n_agents = n_agents
|
||||
self.max_steps = max_steps
|
||||
assert pomdp_size is None or (pomdp_size is not None and pomdp_size % 2 == 1)
|
||||
self.pomdp_size = pomdp_size
|
||||
|
||||
self.done_at_collision = False
|
||||
_actions = Actions(allow_square_movement=kwargs.get('allow_square_movement', True),
|
||||
allow_diagonal_movement=kwargs.get('allow_diagonal_movement', True),
|
||||
@@ -138,7 +150,6 @@ class BaseFactory(gym.Env):
|
||||
|
||||
def reset(self) -> (np.ndarray, int, bool, dict):
|
||||
self.steps = 0
|
||||
self.monitor = FactoryMonitor(self)
|
||||
self.agent_states = []
|
||||
# Agent placement ...
|
||||
agents = np.zeros((self.n_agents, *self.level.shape), dtype=np.int8)
|
||||
@@ -153,7 +164,35 @@ class BaseFactory(gym.Env):
|
||||
# state.shape = level, agent 1,..., agent n,
|
||||
self.state = np.concatenate((np.expand_dims(self.level, axis=0), agents), axis=0)
|
||||
# Returns State
|
||||
return self.state
|
||||
return self._return_state()
|
||||
|
||||
def _return_state(self):
|
||||
if self.pomdp_size:
|
||||
pos = self.agent_states[0].pos
|
||||
# pos = [agent_state.pos for agent_state in self.agent_states]
|
||||
# obs = [] ... list comprehension... pos per agent
|
||||
offset = self.pomdp_size // 2
|
||||
x0, x1 = max(0, pos[0] - offset), pos[0] + offset + 1
|
||||
y0, y1 = max(0, pos[1] - offset), pos[1] + offset + 1
|
||||
obs = self.state[:, x0:x1, y0:y1]
|
||||
if obs.shape[1] != self.pomdp_size or obs.shape[2] != self.pomdp_size:
|
||||
obs_padded = np.zeros((obs.shape[0], self.pomdp_size, self.pomdp_size))
|
||||
try:
|
||||
a_pos = np.argwhere(obs[h.AGENT_START_IDX] == h.IS_OCCUPIED_CELL)[0]
|
||||
except IndexError:
|
||||
print('Shiiiiiit')
|
||||
try:
|
||||
obs_padded[:, abs(a_pos[0]-offset):abs(a_pos[0]-offset)+obs.shape[1], abs(a_pos[1]-offset):abs(a_pos[1]-offset)+obs.shape[2]] = obs
|
||||
except ValueError:
|
||||
print('Shiiiiiit')
|
||||
assert all(np.argwhere(obs_padded[h.AGENT_START_IDX] == h.IS_OCCUPIED_CELL)[0] == (3,3))
|
||||
|
||||
|
||||
|
||||
obs = obs_padded
|
||||
else:
|
||||
obs = self.state
|
||||
return obs
|
||||
|
||||
def do_additional_actions(self, agent_i: int, action: int) -> ((int, int), bool):
|
||||
raise NotImplementedError
|
||||
@@ -188,12 +227,11 @@ class BaseFactory(gym.Env):
|
||||
|
||||
if self.steps >= self.max_steps:
|
||||
done = True
|
||||
self.monitor.set('step_reward', reward)
|
||||
self.monitor.set('step', self.steps)
|
||||
|
||||
if done:
|
||||
info.update(monitor=self.monitor)
|
||||
return self.state, reward, done, info
|
||||
info.update(step_reward=reward, step=self.steps)
|
||||
|
||||
obs = self._return_state()
|
||||
return obs, reward, done, info
|
||||
|
||||
def _is_moving_action(self, action):
|
||||
return action in self._actions.movement_actions
|
||||
|
||||
@@ -99,7 +99,8 @@ class SimpleFactory(BaseFactory):
|
||||
self.next_dirt_spawn = self._dirt_properties.spawn_frequency
|
||||
else:
|
||||
self.next_dirt_spawn -= 1
|
||||
return self.state, r, done, info
|
||||
obs = self._return_state()
|
||||
return obs, r, done, info
|
||||
|
||||
def do_additional_actions(self, agent_i: int, action: int) -> ((int, int), bool):
|
||||
if action != self._is_moving_action(action):
|
||||
@@ -118,12 +119,14 @@ class SimpleFactory(BaseFactory):
|
||||
self.state = np.concatenate((self.state, dirt_slice)) # dirt is now the last slice
|
||||
self.spawn_dirt()
|
||||
self.next_dirt_spawn = self._dirt_properties.spawn_frequency
|
||||
return self.state
|
||||
obs = self._return_state()
|
||||
return obs
|
||||
|
||||
def calculate_reward(self, agent_states: List[AgentState]) -> (int, dict):
|
||||
# TODO: What reward to use?
|
||||
current_dirt_amount = self.state[DIRT_INDEX].sum()
|
||||
dirty_tiles = np.argwhere(self.state[DIRT_INDEX] != h.IS_FREE_CELL).shape[0]
|
||||
info_dict = dict()
|
||||
|
||||
try:
|
||||
# penalty = current_dirt_amount
|
||||
@@ -143,33 +146,35 @@ class SimpleFactory(BaseFactory):
|
||||
if agent_state.action_valid:
|
||||
reward += 1
|
||||
self.print(f'Agent {agent_state.i} did just clean up some dirt at {agent_state.pos}.')
|
||||
self.monitor.set('dirt_cleaned', 1)
|
||||
info_dict.update(dirt_cleaned=1)
|
||||
else:
|
||||
reward -= 0.5
|
||||
reward -= 0.0
|
||||
self.print(f'Agent {agent_state.i} just tried to clean up some dirt '
|
||||
f'at {agent_state.pos}, but was unsucsessfull.')
|
||||
self.monitor.set('failed_cleanup_attempt', 1)
|
||||
info_dict.update(failed_cleanup_attempt=1)
|
||||
|
||||
elif self._is_moving_action(agent_state.action):
|
||||
if agent_state.action_valid:
|
||||
info_dict.update(movement=1)
|
||||
reward -= 0.00
|
||||
else:
|
||||
reward -= 0.5
|
||||
info_dict.update(collision=1)
|
||||
reward -= 0.00
|
||||
|
||||
else:
|
||||
self.monitor.set('no_op', 1)
|
||||
reward -= 0.1
|
||||
info_dict.update(collision=1)
|
||||
reward -= 0.00
|
||||
|
||||
for entity in cols:
|
||||
if entity != self.state_slices.by_name("dirt"):
|
||||
self.monitor.set(f'agent_{agent_state.i}_vs_{self.state_slices[entity]}', 1)
|
||||
info_dict.update({f'agent_{agent_state.i}_vs_{self.state_slices[entity]}': 1})
|
||||
|
||||
self.monitor.set('dirt_amount', current_dirt_amount)
|
||||
self.monitor.set('dirty_tile_count', dirty_tiles)
|
||||
info_dict.update(dirt_amount=current_dirt_amount)
|
||||
info_dict.update(dirty_tile_count=dirty_tiles)
|
||||
self.print(f"reward is {reward}")
|
||||
# Potential based rewards ->
|
||||
# track the last reward , minus the current reward = potential
|
||||
return reward, {}
|
||||
return reward, info_dict
|
||||
|
||||
def print(self, string):
|
||||
if self.verbose:
|
||||
|
||||
Reference in New Issue
Block a user