mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-07-05 09:01:36 +02:00
Add Independent A2C implementation
This commit is contained in:
457
marl_factory_grid/algorithms/marl/a2c_dirt.py
Normal file
457
marl_factory_grid/algorithms/marl/a2c_dirt.py
Normal file
@ -0,0 +1,457 @@
|
||||
import copy
|
||||
import random
|
||||
|
||||
from scipy import signal
|
||||
import matplotlib.pyplot as plt
|
||||
import torch
|
||||
from typing import Union, List, Dict
|
||||
import numpy as np
|
||||
from torch.distributions import Categorical
|
||||
|
||||
from marl_factory_grid.algorithms.marl.base_a2c import PolicyGradient, cumulate_discount
|
||||
from marl_factory_grid.algorithms.marl.memory import MARLActorCriticMemory
|
||||
from marl_factory_grid.algorithms.utils import add_env_props, instantiate_class
|
||||
from pathlib import Path
|
||||
import pandas as pd
|
||||
from collections import deque
|
||||
from stable_baselines3 import PPO
|
||||
|
||||
from marl_factory_grid.environment.actions import Noop
|
||||
from marl_factory_grid.modules import Clean, DoorUse
|
||||
|
||||
|
||||
class Names:
|
||||
REWARD = 'reward'
|
||||
DONE = 'done'
|
||||
ACTION = 'action'
|
||||
OBSERVATION = 'observation'
|
||||
LOGITS = 'logits'
|
||||
HIDDEN_ACTOR = 'hidden_actor'
|
||||
HIDDEN_CRITIC = 'hidden_critic'
|
||||
AGENT = 'agent'
|
||||
ENV = 'env'
|
||||
ENV_NAME = 'env_name'
|
||||
N_AGENTS = 'n_agents'
|
||||
ALGORITHM = 'algorithm'
|
||||
MAX_STEPS = 'max_steps'
|
||||
N_STEPS = 'n_steps'
|
||||
BUFFER_SIZE = 'buffer_size'
|
||||
CRITIC = 'critic'
|
||||
BATCH_SIZE = 'bnatch_size'
|
||||
N_ACTIONS = 'n_actions'
|
||||
TRAIN_RENDER = 'train_render'
|
||||
EVAL_RENDER = 'eval_render'
|
||||
|
||||
|
||||
nms = Names
|
||||
ListOrTensor = Union[List, torch.Tensor]
|
||||
|
||||
|
||||
class A2C:
|
||||
def __init__(self, train_cfg, eval_cfg):
|
||||
self.factory = add_env_props(train_cfg)
|
||||
self.eval_factory = add_env_props(eval_cfg)
|
||||
self.__training = True
|
||||
self.cfg = train_cfg
|
||||
self.n_agents = train_cfg[nms.AGENT][nms.N_AGENTS]
|
||||
self.setup()
|
||||
self.reward_development = []
|
||||
|
||||
def setup(self):
|
||||
# act_dim=6 for dirt_quadrant
|
||||
dirt_piles_positions = [self.factory.state.entities['DirtPiles'][pile_idx].pos for pile_idx in
|
||||
range(len(self.factory.state.entities['DirtPiles']))]
|
||||
obs_dim = 2 + 2*len(dirt_piles_positions)
|
||||
self.agents = [PolicyGradient(self.factory, agent_id=i, obs_dim=obs_dim) for i in range(self.n_agents)]
|
||||
self.doors_exist = "Doors" in self.factory.state.entities.keys()
|
||||
|
||||
@classmethod
|
||||
def _as_torch(cls, x):
|
||||
if isinstance(x, np.ndarray):
|
||||
return torch.from_numpy(x)
|
||||
elif isinstance(x, List):
|
||||
return torch.tensor(x)
|
||||
elif isinstance(x, (int, float)):
|
||||
return torch.tensor([x])
|
||||
return x
|
||||
|
||||
def get_actions(self, observations) -> ListOrTensor:
|
||||
# Given an observation, get actions for both agents
|
||||
actions = [agent.step(self._as_torch(observations[ag_i]).view(-1).to(torch.float32)) for ag_i, agent in enumerate(self.agents)]
|
||||
return actions
|
||||
|
||||
def execute_policy(self, observations) -> ListOrTensor:
|
||||
# Use deterministic policy for inference
|
||||
actions = [agent.policy(self._as_torch(observations[ag_i]).view(-1).to(torch.float32)) for ag_i, agent in enumerate(self.agents)]
|
||||
return actions
|
||||
|
||||
def transform_observations(self, env):
|
||||
""" Assumes that agent has observations -DirtPiles and -Self """
|
||||
agent_positions = [env.state.moving_entites[agent_idx].pos for agent_idx in range(self.n_agents)]
|
||||
dirt_piles_positions = [env.state.entities['DirtPiles'][pile_idx].pos for pile_idx in range(len(env.state.entities['DirtPiles']))]
|
||||
trans_obs = [torch.zeros(2+2*len(dirt_piles_positions)) for _ in range(len(agent_positions))]
|
||||
for i, pos in enumerate(agent_positions):
|
||||
agent_x, agent_y = pos[0], pos[1]
|
||||
trans_obs[i][0] = agent_x
|
||||
trans_obs[i][1] = agent_y
|
||||
idx = 2
|
||||
for pos in dirt_piles_positions:
|
||||
trans_obs[i][idx] = pos[0]
|
||||
trans_obs[i][idx + 1] = pos[1]
|
||||
idx += 2
|
||||
return trans_obs
|
||||
|
||||
def get_all_observations(self, env):
|
||||
first_trans_obs = self.transform_observations(env)[0]
|
||||
valid_agent_positions = env.state.entities.floorlist
|
||||
#observations_shape = (max(t[0] for t in valid_agent_positions) + 2, max(t[1] for t in valid_agent_positions) + 2)
|
||||
observations = []
|
||||
for idx, pos in enumerate(valid_agent_positions):
|
||||
obs = copy.deepcopy(first_trans_obs)
|
||||
obs[0] = pos[0]
|
||||
obs[1] = pos[1]
|
||||
observations.append(obs)
|
||||
|
||||
return observations
|
||||
|
||||
def get_dirt_piles_positions(self, env):
|
||||
return [env.state.entities['DirtPiles'][pile_idx].pos for pile_idx in range(len(env.state.entities['DirtPiles']))]
|
||||
|
||||
def get_ordered_dirt_piles(self, env):
|
||||
ordered_dirt_piles = []
|
||||
if self.cfg[nms.ALGORITHM]["pile-order"] in ["fixed", "agents"]:
|
||||
ordered_dirt_piles = self.get_dirt_piles_positions(env)
|
||||
elif self.cfg[nms.ALGORITHM]["pile-order"] == "random":
|
||||
ordered_dirt_piles = self.get_dirt_piles_positions(env)
|
||||
random.shuffle(ordered_dirt_piles)
|
||||
elif self.cfg[nms.ALGORITHM]["pile-order"] == "none":
|
||||
ordered_dirt_piles = None
|
||||
else:
|
||||
print("Not a valid pile order option.")
|
||||
exit()
|
||||
|
||||
return ordered_dirt_piles
|
||||
|
||||
def distribute_indices(self, env):
|
||||
indices = []
|
||||
n_dirt_piles = len(self.get_dirt_piles_positions(env))
|
||||
if n_dirt_piles == 1 or self.cfg[nms.ALGORITHM]["pile-order"] in ["fixed", "random", "none"]:
|
||||
indices = [[0] for _ in range(self.n_agents)]
|
||||
else:
|
||||
base_count = n_dirt_piles // self.n_agents
|
||||
remainder = n_dirt_piles % self.n_agents
|
||||
|
||||
start_index = 0
|
||||
for i in range(self.n_agents):
|
||||
# Add an extra index to the first 'remainder' objects
|
||||
end_index = start_index + base_count + (1 if i < remainder else 0)
|
||||
indices.append(list(range(start_index, end_index)))
|
||||
start_index = end_index
|
||||
|
||||
return indices
|
||||
|
||||
def update_target_pile(self, env, agent_idx, target_pile):
|
||||
indices = self.distribute_indices(env)
|
||||
if target_pile[agent_idx] + 1 in indices[agent_idx]:
|
||||
target_pile[agent_idx] += 1
|
||||
|
||||
def door_is_close(self, env, agent_idx):
|
||||
neighbourhood = [y for x in env.state.entities.neighboring_positions(env.state["Agent"][agent_idx].pos)
|
||||
for y in env.state.entities.pos_dict[x] if "Door" in y.name]
|
||||
if neighbourhood:
|
||||
return neighbourhood[0]
|
||||
|
||||
def use_door_or_move(self, env, obs, cleaned_dirt_piles, target_pile, det=False):
|
||||
action = []
|
||||
for agent_idx, agent in enumerate(self.agents):
|
||||
agent_obs = self._as_torch((obs)[agent_idx]).view(-1).to(torch.float32)
|
||||
# If agent already reached its target
|
||||
if list(cleaned_dirt_piles.values())[target_pile[agent_idx]]:
|
||||
action.append(next(action_i for action_i, a in enumerate(env.state["Agent"][agent_idx].actions) if a.name == "Noop"))
|
||||
if not det:
|
||||
# Include agent experience entry manually
|
||||
agent._episode.append((None, None, None, agent.vf(agent_obs)))
|
||||
else:
|
||||
if door := self.door_is_close(env, agent_idx):
|
||||
if door.is_closed:
|
||||
action.append(next(action_i for action_i, a in enumerate(env.state["Agent"][agent_idx].actions) if a.name == "use_door"))
|
||||
if not det:
|
||||
# Include agent experience entry manually
|
||||
agent._episode.append((None, None, None, agent.vf(agent_obs)))
|
||||
else:
|
||||
if det:
|
||||
action.append(int(agent.pi(agent_obs, det=True)[0]))
|
||||
else:
|
||||
action.append(int(agent.step(agent_obs)))
|
||||
else:
|
||||
if det:
|
||||
action.append(int(agent.pi(agent_obs, det=True)[0]))
|
||||
else:
|
||||
action.append(int(agent.step(agent_obs)))
|
||||
return action
|
||||
|
||||
def reward_distance(self, env, obs, target_pile, reward):
|
||||
agent_positions = [env.state.moving_entites[agent_idx].pos for agent_idx in range(self.n_agents)]
|
||||
# Give a negative reward for every step that keeps agent from getting closer to currently selected target pile/ closest pile
|
||||
for idx, pos in enumerate(agent_positions):
|
||||
last_pos = (int(obs[idx][0]), int(obs[idx][1].item()))
|
||||
target_pile_pos = self.get_dirt_piles_positions(env)[target_pile[idx]]
|
||||
last_distance = np.abs(target_pile_pos[0] - last_pos[0]) + np.abs(target_pile_pos[1] - last_pos[1])
|
||||
new_distance = np.abs(target_pile_pos[0] - pos[0]) + np.abs(target_pile_pos[1] - pos[1])
|
||||
if new_distance >= last_distance:
|
||||
reward[idx] -= 0.05 # 0.05
|
||||
return reward
|
||||
|
||||
def punish_entering_same_field(self, next_obs, passed_fields, reward):
|
||||
# Give a high negative reward if agent enters same field twice
|
||||
for idx in range(self.n_agents):
|
||||
if (next_obs[idx][0], next_obs[idx][1]) in passed_fields[idx]:
|
||||
reward[idx] += -0.1
|
||||
else:
|
||||
passed_fields[idx].append((next_obs[idx][0], next_obs[idx][1]))
|
||||
|
||||
|
||||
def handle_dirt_quadrant_observation_bugs(self, obs, env):
|
||||
try:
|
||||
# Check that dirt position and amount are still correct
|
||||
assert np.where(obs[0][0] == 0.5)[0][0] == 1 and np.where(obs[0][0] == 0.5)[0][0] == 1
|
||||
except:
|
||||
print("Missing dirt pile")
|
||||
# Manually place dirt on defined position
|
||||
obs[0][0][1][1] = 0.5
|
||||
try:
|
||||
# Check that self still returns a valid agent position on the map
|
||||
assert np.where(obs[0][1] == 1)[0][0] and np.where(obs[0][1] == 1)[1][0]
|
||||
except:
|
||||
# Place agent manually in obs object on last known position
|
||||
x, y = env.state.moving_entites[0].pos[0], env.state.moving_entites[0].pos[1]
|
||||
obs[0][1][x][y] = 1
|
||||
print("Missing agent position")
|
||||
|
||||
def handle_dirt(self, env, cleaned_dirt_piles, ordered_dirt_piles, target_pile, reward, done):
|
||||
# Check if agent moved on field with dirt. If that is the case collect dirt automatically
|
||||
agent_positions = [env.state.moving_entites[agent_idx].pos for agent_idx in range(self.n_agents)]
|
||||
dirt_piles_positions = self.get_dirt_piles_positions(env)
|
||||
if any([True for pos in agent_positions if pos in dirt_piles_positions]):
|
||||
# Do Noop for agent that does not collect dirt
|
||||
"""action = [np.array(5), np.array(5)]
|
||||
|
||||
# Execute real step in environment
|
||||
for idx, pos in enumerate(agent_positions):
|
||||
if pos in cleaned_dirt_piles.keys() and not cleaned_dirt_piles[pos]:
|
||||
action[idx] = np.array(4)
|
||||
# Collect dirt
|
||||
_, next_obs, reward, done, info = env.step(action)
|
||||
cleaned_dirt_piles[pos] = True
|
||||
break"""
|
||||
|
||||
# Only simulate collecting the dirt
|
||||
for idx, pos in enumerate(agent_positions):
|
||||
if pos in self.get_dirt_piles_positions(env) and not cleaned_dirt_piles[pos]:
|
||||
# print(env.state.entities["Agent"][idx], pos, idx, target_pile, ordered_dirt_piles)
|
||||
# If dirt piles should be cleaned in a specific order
|
||||
if ordered_dirt_piles:
|
||||
if pos == ordered_dirt_piles[target_pile[idx]]:
|
||||
reward[idx] += 1 # 1
|
||||
cleaned_dirt_piles[pos] = True
|
||||
# Set pointer to next dirt pile
|
||||
self.update_target_pile(env, idx, target_pile)
|
||||
break
|
||||
else:
|
||||
reward[idx] += 1 # 1
|
||||
cleaned_dirt_piles[pos] = True
|
||||
break
|
||||
|
||||
if all(cleaned_dirt_piles.values()):
|
||||
done = True
|
||||
|
||||
return reward, done
|
||||
|
||||
def handle_finished_episode(self, obs):
|
||||
with torch.inference_mode(False):
|
||||
for ag_i, agent in enumerate(self.agents):
|
||||
# Get states, actions, rewards and values from rollout buffer
|
||||
(s, a, R, V) = agent.finish_episode()
|
||||
# Calculate discounted return and advantage
|
||||
G = cumulate_discount(R, self.cfg[nms.ALGORITHM]["gamma"])
|
||||
if self.cfg[nms.ALGORITHM]["advantage"] == "Reinforce":
|
||||
A = G
|
||||
elif self.cfg[nms.ALGORITHM]["advantage"] == "Advantage-AC":
|
||||
A = G - V # Actor-Critic Advantages
|
||||
elif self.cfg[nms.ALGORITHM]["advantage"] == "TD-Advantage-AC":
|
||||
with torch.no_grad():
|
||||
A = R + self.cfg[nms.ALGORITHM]["gamma"] * np.append(V[1:], agent.vf(
|
||||
self._as_torch(obs[ag_i]).view(-1).to(
|
||||
torch.float32)).numpy()) - V # TD Actor-Critic Advantages
|
||||
else:
|
||||
print("Not a valid advantage option.")
|
||||
exit()
|
||||
|
||||
rollout = (torch.tensor(x.copy()).to(torch.float32) for x in (s, a, G, A))
|
||||
# Update policy and value net of agent with experience from rollout buffer
|
||||
agent.train(*rollout)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def train_loop(self):
|
||||
env = self.factory
|
||||
if self.cfg[nms.ENV][nms.TRAIN_RENDER]:
|
||||
env.render()
|
||||
n_steps, max_steps = [self.cfg[nms.ALGORITHM][k] for k in [nms.N_STEPS, nms.MAX_STEPS]]
|
||||
global_steps, episode = 0, 0
|
||||
dirt_piles_positions = self.get_dirt_piles_positions(env)
|
||||
used_actions = {i:0 for i in range(len(env.state.entities["Agent"][0]._actions))} # Assume both agents have the same actions
|
||||
|
||||
while global_steps < max_steps:
|
||||
print(global_steps)
|
||||
obs = env.reset() # !!!!!!!!Commented seems to work better? Only if a fixed spawnpoint is given
|
||||
print([env.state.moving_entites[agent_idx].pos for agent_idx in range(self.n_agents)])
|
||||
"""obs = list(obs.values())"""
|
||||
obs = self.transform_observations(env)
|
||||
done, rew_log = [False] * self.n_agents, 0
|
||||
|
||||
cleaned_dirt_piles = {pos: False for pos in dirt_piles_positions}
|
||||
ordered_dirt_piles = self.get_ordered_dirt_piles(env)
|
||||
target_pile = [partition[0] for partition in self.distribute_indices(env)] # pointer that points to the target pile for each agent. (point to same pile, point to different piles)
|
||||
"""passed_fields = [[] for _ in range(self.n_agents)]"""
|
||||
|
||||
# Add Clean and Noop actions to agent actions so that they can be executed when the agent comes on a dirpile
|
||||
"""for i in range(self.n_agents):
|
||||
self.factory.state['Agent'][i].actions.extend([Clean(), Noop()])"""
|
||||
|
||||
while not all(done):
|
||||
# 0="North", 1="East", 2="South", 3="West", 4="Clean", 5="Noop"
|
||||
action = self.use_door_or_move(env, obs, cleaned_dirt_piles, target_pile) if self.doors_exist else self.get_actions(obs)
|
||||
used_actions[int(action[0])] += 1
|
||||
_, next_obs, reward, done, info = env.step(action)
|
||||
if done:
|
||||
print("DoneAtMaxStepsReached:", len(self.agents[0]._episode))
|
||||
next_obs = self.transform_observations(env)
|
||||
|
||||
# Add small negative reward if agent has moved away from the target_pile
|
||||
reward = self.reward_distance(env, obs, target_pile, reward)
|
||||
|
||||
# Check and handle if agent is on field with dirt
|
||||
reward, done = self.handle_dirt(env, cleaned_dirt_piles, ordered_dirt_piles, target_pile, reward, done)
|
||||
|
||||
if n_steps != 0 and (global_steps + 1) % n_steps == 0:
|
||||
print("max_steps reached")
|
||||
done = True
|
||||
|
||||
done = [done] * self.n_agents if isinstance(done, bool) else done
|
||||
for ag_i, agent in enumerate(self.agents):
|
||||
# Add agent results into respective rollout buffers
|
||||
agent._episode[-1] = (next_obs[ag_i], action[ag_i], reward[ag_i], agent._episode[-1][-1])
|
||||
|
||||
|
||||
if self.cfg[nms.ENV][nms.TRAIN_RENDER]:
|
||||
env.render()
|
||||
|
||||
obs = next_obs
|
||||
|
||||
if all(done): self.handle_finished_episode(obs)
|
||||
|
||||
global_steps += 1
|
||||
rew_log += sum(reward)
|
||||
|
||||
if global_steps >= max_steps:
|
||||
break
|
||||
|
||||
print(f'reward at episode: {episode} = {rew_log}')
|
||||
self.reward_development.append(rew_log)
|
||||
episode += 1
|
||||
|
||||
# Create value map
|
||||
observations_shape = (max(t[0] for t in env.state.entities.floorlist) + 2, max(t[1] for t in env.state.entities.floorlist) + 2)
|
||||
value_maps = [np.zeros(observations_shape) for _ in self.agents]
|
||||
likeliest_action = [np.full(observations_shape, np.NaN) for _ in self.agents]
|
||||
action_probabilities = [np.zeros((observations_shape[0],observations_shape[1], env.action_space[0].n)) for _ in self.agents]
|
||||
for obs in self.get_all_observations(env):
|
||||
"""obs = self._as_torch(obs).view(-1).to(torch.float32)"""
|
||||
for idx, agent in enumerate(self.agents):
|
||||
"""indices = np.where(obs[1] == 1) # Get agent position on grid (1 indicates the position)
|
||||
x, y = indices[0][0], indices[1][0]"""
|
||||
x, y = int(obs[0]), int(obs[1])
|
||||
try:
|
||||
value_maps[idx][x][y] = agent.vf(obs)
|
||||
probs = agent.pi.distribution(obs).probs
|
||||
likeliest_action[idx][x][y] = torch.argmax(probs) # get the likeliest action at the current agent position
|
||||
action_probabilities[idx][x][y] = probs
|
||||
except:
|
||||
pass
|
||||
|
||||
print("=======Value Maps=======")
|
||||
for agent_idx, vmap in enumerate(value_maps):
|
||||
print(f"Value map of agent {agent_idx}:")
|
||||
vmap = self._as_torch(vmap).round(decimals=4)
|
||||
max_digits = max(len(str(vmap.max().item())), len(str(vmap.min().item())))
|
||||
for idx, row in enumerate(vmap):
|
||||
print(' '.join(f" {elem:>{max_digits+1}}" for elem in row.tolist()))
|
||||
print("=======Likeliest Action=======")
|
||||
for agent_idx, amap in enumerate(likeliest_action):
|
||||
print(f"Likeliest action map of agent {agent_idx}:")
|
||||
print(amap)
|
||||
print("=======Action Probabilities=======")
|
||||
for agent_idx, pmap in enumerate(action_probabilities):
|
||||
print(f"Action probability map of agent {agent_idx}:")
|
||||
for d in range(pmap.shape[0]):
|
||||
row = '['
|
||||
for r in range(pmap.shape[1]):
|
||||
row += "[" + ', '.join(f"{x:7.4f}" for x in pmap[d, r]) + "]"
|
||||
print(row + "]")
|
||||
print("Used actions:", used_actions)
|
||||
|
||||
|
||||
@torch.inference_mode(True)
|
||||
def eval_loop(self, n_episodes, render=False):
|
||||
env = self.eval_factory
|
||||
if self.cfg[nms.ENV][nms.EVAL_RENDER]:
|
||||
env.render()
|
||||
episode, results = 0, []
|
||||
dirt_piles_positions = self.get_dirt_piles_positions(env)
|
||||
|
||||
while episode < n_episodes:
|
||||
obs = env.reset()
|
||||
"""obs = list(obs.values())"""
|
||||
obs = self.transform_observations(env)
|
||||
done, rew_log, eps_rew = [False] * self.n_agents, 0, torch.zeros(self.n_agents)
|
||||
|
||||
cleaned_dirt_piles = {pos: False for pos in dirt_piles_positions}
|
||||
ordered_dirt_piles = self.get_ordered_dirt_piles(env)
|
||||
target_pile = [partition[0] for partition in self.distribute_indices(env)]
|
||||
|
||||
# Add Clean and Noop actions to agent actions so that they can be executed when the agent comes on a dirpile
|
||||
"""for i in range(self.n_agents):
|
||||
self.factory.state['Agent'][i].actions.extend([Clean(), Noop()])"""
|
||||
|
||||
while not all(done):
|
||||
action = self.use_door_or_move(env, obs, cleaned_dirt_piles, target_pile, det=True) if self.doors_exist else self.execute_policy(obs) # zero exploration
|
||||
print(action)
|
||||
_, next_obs, reward, done, info = env.step(action)
|
||||
if done:
|
||||
print("DoneAtMaxStepsReached:", len(self.agents[0]._episode))
|
||||
next_obs = self.transform_observations(env)
|
||||
|
||||
# Add small negative reward if agent has moved away from the target_pile
|
||||
reward = self.reward_distance(env, obs, target_pile, reward)
|
||||
|
||||
# Check and handle if agent is on field with dirt
|
||||
reward, done = self.handle_dirt(env, cleaned_dirt_piles, ordered_dirt_piles, target_pile, reward, done)
|
||||
|
||||
done = [done] * self.n_agents if isinstance(done, bool) else done
|
||||
|
||||
if self.cfg[nms.ENV][nms.EVAL_RENDER]:
|
||||
env.render()
|
||||
|
||||
obs = next_obs
|
||||
|
||||
episode += 1
|
||||
|
||||
def plot_reward_development(self):
|
||||
plt.plot(self.reward_development)
|
||||
plt.title('Reward development')
|
||||
plt.xlabel('Episode')
|
||||
plt.ylabel('Reward')
|
||||
plt.savefig("/Users/julian/Coding/Projects/PyCharmProjects/EDYS/study_out/two_rooms_one_door_modified_runs/reward_development.png")
|
||||
plt.show()
|
||||
|
78
marl_factory_grid/algorithms/marl/base_a2c.py
Normal file
78
marl_factory_grid/algorithms/marl/base_a2c.py
Normal file
@ -0,0 +1,78 @@
|
||||
import numpy as np; import torch as th; import scipy as sp; import gym
|
||||
import os; from collections import deque; import matplotlib.pyplot as plt
|
||||
from tqdm import tqdm
|
||||
|
||||
# RLLab Magic for calculating the discounted return G(t) = R(t) + gamma * R(t-1)
|
||||
# cf. https://github.com/rll/rllab/blob/ba78e4c16dc492982e648f117875b22af3965579/rllab/misc/special.py#L107
|
||||
cumulate_discount = lambda x, gamma: sp.signal.lfilter([1], [1, - gamma], x[::-1], axis=0)[::-1]
|
||||
|
||||
class Net(th.nn.Module):
|
||||
def __init__(self, shape, activation, lr):
|
||||
super().__init__()
|
||||
self.net = th.nn.Sequential(*[ layer
|
||||
for io, a in zip(zip(shape[:-1], shape[1:]), [activation] * (len(shape)-2) + [th.nn.Identity] )
|
||||
for layer in [th.nn.Linear(*io), a()]])
|
||||
self.optimizer = th.optim.Adam(self.net.parameters(), lr=lr)
|
||||
|
||||
class ValueNet(Net):
|
||||
def __init__(self, obs_dim, hidden_sizes=[64,64], activation=th.nn.Tanh, lr=1e-3):
|
||||
super().__init__([obs_dim] + hidden_sizes + [1], activation, lr)
|
||||
def forward(self, obs): return self.net(obs)
|
||||
def loss(self, states, returns): return ((returns - self(states))**2).mean()
|
||||
|
||||
class PolicyNet(Net):
|
||||
def __init__(self, obs_dim, act_dim, hidden_sizes=[64,64], activation=th.nn.Tanh, lr=3e-4):
|
||||
super().__init__([obs_dim] + hidden_sizes + [act_dim], activation, lr)
|
||||
self.distribution = lambda obs: th.distributions.Categorical(logits=self.net(obs))
|
||||
|
||||
def forward(self, obs, act=None, det=False):
|
||||
"""Given an observation: Returns policy distribution and probablilty for a given action
|
||||
or Returns a sampled action and its corresponding probablilty"""
|
||||
pi = self.distribution(obs)
|
||||
if act is not None: return pi, pi.log_prob(act)
|
||||
act = self.net(obs).argmax() if det else pi.sample() # sample from the learned distribution
|
||||
return act, pi.log_prob(act)
|
||||
|
||||
def loss(self, states, actions, advantages):
|
||||
_, logp = self.forward(states, actions)
|
||||
loss = -(logp * advantages).mean()
|
||||
return loss
|
||||
|
||||
|
||||
class PolicyGradient:
|
||||
""" Autonomous agent using vanilla policy gradient. """
|
||||
def __init__(self, env, seed=42, gamma=0.99, agent_id=0, act_dim=None, obs_dim=None):
|
||||
self.env = env; self.gamma = gamma; # Setup env and discount
|
||||
th.manual_seed(seed);np.random.seed(seed) # Seed Torch, numpy and gym
|
||||
# Keep track of previous rewards and performed steps to calcule the mean Return metric
|
||||
self._episode, self.ep_returns, self.num_steps = [], deque(maxlen=100), 0
|
||||
# Get observation and action shapes
|
||||
if not obs_dim:
|
||||
obs_size = env.observation_space.shape if len(env.state.entities.by_name("Agents")) == 1 \
|
||||
else env.observation_space[agent_id].shape # Single agent case vs. multi-agent case
|
||||
obs_dim = np.prod(obs_size);
|
||||
if not act_dim: act_dim = env.action_space[agent_id].n
|
||||
self.vf = ValueNet(obs_dim) # Setup Value Network (Critic)
|
||||
self.pi = PolicyNet(obs_dim, act_dim) # Setup Policy Network (Actor)
|
||||
|
||||
def step(self, obs):
|
||||
""" Given an observation, get action and probs from policy and values from critic"""
|
||||
with th.no_grad(): (a, _), v = self.pi(obs), self.vf(obs)
|
||||
self._episode.append((None,None,None,v))
|
||||
return a.numpy()
|
||||
|
||||
def policy(self, obs, det=True): return self.pi(obs, det=det)[0].numpy()
|
||||
|
||||
def finish_episode(self):
|
||||
"""Process self._episode & reset self.env, Returns (s,a,G,V)-Tuple and new inital state"""
|
||||
s, a, R, V = (np.array(e) for e in zip(*self._episode)) # Get trajectories from rollout
|
||||
self.ep_returns.append(sum(R)); self._episode = [] # Add epoisode return to buffer & reset
|
||||
return (s,a,R,V) # state, action, Return, Value Tensors
|
||||
|
||||
def train(self, states, actions, returns, advantages): # Update policy weights
|
||||
self.pi.optimizer.zero_grad(); self.vf.optimizer.zero_grad()# Reset optimizer
|
||||
states = states.flatten(1,-1) # Reduce dimensionality to rollout_dim x input_dim
|
||||
policy_loss = self.pi.loss(states, actions, advantages) # Calculate Policy loss
|
||||
policy_loss.backward(); self.pi.optimizer.step() # Apply Policy loss
|
||||
value_loss = self.vf.loss(states, returns) # Calculate Value loss
|
||||
value_loss.backward(); self.vf.optimizer.step() # Apply Value loss
|
@ -1,5 +1,5 @@
|
||||
MOVEMENTS_VALID: float = -0.001
|
||||
MOVEMENTS_FAIL: float = -0.05
|
||||
MOVEMENTS_VALID: float = -0.01 # default: -0.001
|
||||
MOVEMENTS_FAIL: float = -0.1 # default: -0.05
|
||||
NOOP: float = -0.01
|
||||
COLLISION: float = -0.5
|
||||
COLLISION_DONE: float = -1
|
||||
|
@ -1,15 +1,19 @@
|
||||
import copy
|
||||
from pathlib import Path
|
||||
|
||||
from marl_factory_grid.algorithms.marl.iac import LoopIAC
|
||||
from marl_factory_grid.algorithms.marl.a2c_dirt import A2C
|
||||
from marl_factory_grid.algorithms.utils import load_yaml_file
|
||||
|
||||
if __name__ == '__main__':
|
||||
cfg_path = Path('../marl_factory_grid/algorithms/marl/example_config.yaml')
|
||||
cfg_path = Path('../marl_factory_grid/algorithms/marl/configs/dirt_quadrant_config.yaml')
|
||||
|
||||
cfg = load_yaml_file(cfg_path)
|
||||
train_cfg = load_yaml_file(cfg_path)
|
||||
# Use environment config with fixed spawnpoints for eval
|
||||
eval_cfg = copy.deepcopy(train_cfg)
|
||||
eval_cfg["env"]["env_name"] = "custom/dirt_quadrant" # Options: two_rooms_one_door_modified, dirt_quadrant
|
||||
|
||||
print("Training phase")
|
||||
agent = LoopIAC(cfg)
|
||||
agent = A2C(train_cfg, eval_cfg)
|
||||
agent.train_loop()
|
||||
agent.plot_reward_development()
|
||||
print("Evaluation phase")
|
||||
agent.eval_loop(10)
|
Reference in New Issue
Block a user