Add Independent A2C implementation

This commit is contained in:
Julian Schönberger
2024-05-02 11:10:23 +02:00
parent 175a02f997
commit 55026eda12
4 changed files with 546 additions and 7 deletions

View File

@ -0,0 +1,457 @@
import copy
import random
from scipy import signal
import matplotlib.pyplot as plt
import torch
from typing import Union, List, Dict
import numpy as np
from torch.distributions import Categorical
from marl_factory_grid.algorithms.marl.base_a2c import PolicyGradient, cumulate_discount
from marl_factory_grid.algorithms.marl.memory import MARLActorCriticMemory
from marl_factory_grid.algorithms.utils import add_env_props, instantiate_class
from pathlib import Path
import pandas as pd
from collections import deque
from stable_baselines3 import PPO
from marl_factory_grid.environment.actions import Noop
from marl_factory_grid.modules import Clean, DoorUse
class Names:
REWARD = 'reward'
DONE = 'done'
ACTION = 'action'
OBSERVATION = 'observation'
LOGITS = 'logits'
HIDDEN_ACTOR = 'hidden_actor'
HIDDEN_CRITIC = 'hidden_critic'
AGENT = 'agent'
ENV = 'env'
ENV_NAME = 'env_name'
N_AGENTS = 'n_agents'
ALGORITHM = 'algorithm'
MAX_STEPS = 'max_steps'
N_STEPS = 'n_steps'
BUFFER_SIZE = 'buffer_size'
CRITIC = 'critic'
BATCH_SIZE = 'bnatch_size'
N_ACTIONS = 'n_actions'
TRAIN_RENDER = 'train_render'
EVAL_RENDER = 'eval_render'
nms = Names
ListOrTensor = Union[List, torch.Tensor]
class A2C:
def __init__(self, train_cfg, eval_cfg):
self.factory = add_env_props(train_cfg)
self.eval_factory = add_env_props(eval_cfg)
self.__training = True
self.cfg = train_cfg
self.n_agents = train_cfg[nms.AGENT][nms.N_AGENTS]
self.setup()
self.reward_development = []
def setup(self):
# act_dim=6 for dirt_quadrant
dirt_piles_positions = [self.factory.state.entities['DirtPiles'][pile_idx].pos for pile_idx in
range(len(self.factory.state.entities['DirtPiles']))]
obs_dim = 2 + 2*len(dirt_piles_positions)
self.agents = [PolicyGradient(self.factory, agent_id=i, obs_dim=obs_dim) for i in range(self.n_agents)]
self.doors_exist = "Doors" in self.factory.state.entities.keys()
@classmethod
def _as_torch(cls, x):
if isinstance(x, np.ndarray):
return torch.from_numpy(x)
elif isinstance(x, List):
return torch.tensor(x)
elif isinstance(x, (int, float)):
return torch.tensor([x])
return x
def get_actions(self, observations) -> ListOrTensor:
# Given an observation, get actions for both agents
actions = [agent.step(self._as_torch(observations[ag_i]).view(-1).to(torch.float32)) for ag_i, agent in enumerate(self.agents)]
return actions
def execute_policy(self, observations) -> ListOrTensor:
# Use deterministic policy for inference
actions = [agent.policy(self._as_torch(observations[ag_i]).view(-1).to(torch.float32)) for ag_i, agent in enumerate(self.agents)]
return actions
def transform_observations(self, env):
""" Assumes that agent has observations -DirtPiles and -Self """
agent_positions = [env.state.moving_entites[agent_idx].pos for agent_idx in range(self.n_agents)]
dirt_piles_positions = [env.state.entities['DirtPiles'][pile_idx].pos for pile_idx in range(len(env.state.entities['DirtPiles']))]
trans_obs = [torch.zeros(2+2*len(dirt_piles_positions)) for _ in range(len(agent_positions))]
for i, pos in enumerate(agent_positions):
agent_x, agent_y = pos[0], pos[1]
trans_obs[i][0] = agent_x
trans_obs[i][1] = agent_y
idx = 2
for pos in dirt_piles_positions:
trans_obs[i][idx] = pos[0]
trans_obs[i][idx + 1] = pos[1]
idx += 2
return trans_obs
def get_all_observations(self, env):
first_trans_obs = self.transform_observations(env)[0]
valid_agent_positions = env.state.entities.floorlist
#observations_shape = (max(t[0] for t in valid_agent_positions) + 2, max(t[1] for t in valid_agent_positions) + 2)
observations = []
for idx, pos in enumerate(valid_agent_positions):
obs = copy.deepcopy(first_trans_obs)
obs[0] = pos[0]
obs[1] = pos[1]
observations.append(obs)
return observations
def get_dirt_piles_positions(self, env):
return [env.state.entities['DirtPiles'][pile_idx].pos for pile_idx in range(len(env.state.entities['DirtPiles']))]
def get_ordered_dirt_piles(self, env):
ordered_dirt_piles = []
if self.cfg[nms.ALGORITHM]["pile-order"] in ["fixed", "agents"]:
ordered_dirt_piles = self.get_dirt_piles_positions(env)
elif self.cfg[nms.ALGORITHM]["pile-order"] == "random":
ordered_dirt_piles = self.get_dirt_piles_positions(env)
random.shuffle(ordered_dirt_piles)
elif self.cfg[nms.ALGORITHM]["pile-order"] == "none":
ordered_dirt_piles = None
else:
print("Not a valid pile order option.")
exit()
return ordered_dirt_piles
def distribute_indices(self, env):
indices = []
n_dirt_piles = len(self.get_dirt_piles_positions(env))
if n_dirt_piles == 1 or self.cfg[nms.ALGORITHM]["pile-order"] in ["fixed", "random", "none"]:
indices = [[0] for _ in range(self.n_agents)]
else:
base_count = n_dirt_piles // self.n_agents
remainder = n_dirt_piles % self.n_agents
start_index = 0
for i in range(self.n_agents):
# Add an extra index to the first 'remainder' objects
end_index = start_index + base_count + (1 if i < remainder else 0)
indices.append(list(range(start_index, end_index)))
start_index = end_index
return indices
def update_target_pile(self, env, agent_idx, target_pile):
indices = self.distribute_indices(env)
if target_pile[agent_idx] + 1 in indices[agent_idx]:
target_pile[agent_idx] += 1
def door_is_close(self, env, agent_idx):
neighbourhood = [y for x in env.state.entities.neighboring_positions(env.state["Agent"][agent_idx].pos)
for y in env.state.entities.pos_dict[x] if "Door" in y.name]
if neighbourhood:
return neighbourhood[0]
def use_door_or_move(self, env, obs, cleaned_dirt_piles, target_pile, det=False):
action = []
for agent_idx, agent in enumerate(self.agents):
agent_obs = self._as_torch((obs)[agent_idx]).view(-1).to(torch.float32)
# If agent already reached its target
if list(cleaned_dirt_piles.values())[target_pile[agent_idx]]:
action.append(next(action_i for action_i, a in enumerate(env.state["Agent"][agent_idx].actions) if a.name == "Noop"))
if not det:
# Include agent experience entry manually
agent._episode.append((None, None, None, agent.vf(agent_obs)))
else:
if door := self.door_is_close(env, agent_idx):
if door.is_closed:
action.append(next(action_i for action_i, a in enumerate(env.state["Agent"][agent_idx].actions) if a.name == "use_door"))
if not det:
# Include agent experience entry manually
agent._episode.append((None, None, None, agent.vf(agent_obs)))
else:
if det:
action.append(int(agent.pi(agent_obs, det=True)[0]))
else:
action.append(int(agent.step(agent_obs)))
else:
if det:
action.append(int(agent.pi(agent_obs, det=True)[0]))
else:
action.append(int(agent.step(agent_obs)))
return action
def reward_distance(self, env, obs, target_pile, reward):
agent_positions = [env.state.moving_entites[agent_idx].pos for agent_idx in range(self.n_agents)]
# Give a negative reward for every step that keeps agent from getting closer to currently selected target pile/ closest pile
for idx, pos in enumerate(agent_positions):
last_pos = (int(obs[idx][0]), int(obs[idx][1].item()))
target_pile_pos = self.get_dirt_piles_positions(env)[target_pile[idx]]
last_distance = np.abs(target_pile_pos[0] - last_pos[0]) + np.abs(target_pile_pos[1] - last_pos[1])
new_distance = np.abs(target_pile_pos[0] - pos[0]) + np.abs(target_pile_pos[1] - pos[1])
if new_distance >= last_distance:
reward[idx] -= 0.05 # 0.05
return reward
def punish_entering_same_field(self, next_obs, passed_fields, reward):
# Give a high negative reward if agent enters same field twice
for idx in range(self.n_agents):
if (next_obs[idx][0], next_obs[idx][1]) in passed_fields[idx]:
reward[idx] += -0.1
else:
passed_fields[idx].append((next_obs[idx][0], next_obs[idx][1]))
def handle_dirt_quadrant_observation_bugs(self, obs, env):
try:
# Check that dirt position and amount are still correct
assert np.where(obs[0][0] == 0.5)[0][0] == 1 and np.where(obs[0][0] == 0.5)[0][0] == 1
except:
print("Missing dirt pile")
# Manually place dirt on defined position
obs[0][0][1][1] = 0.5
try:
# Check that self still returns a valid agent position on the map
assert np.where(obs[0][1] == 1)[0][0] and np.where(obs[0][1] == 1)[1][0]
except:
# Place agent manually in obs object on last known position
x, y = env.state.moving_entites[0].pos[0], env.state.moving_entites[0].pos[1]
obs[0][1][x][y] = 1
print("Missing agent position")
def handle_dirt(self, env, cleaned_dirt_piles, ordered_dirt_piles, target_pile, reward, done):
# Check if agent moved on field with dirt. If that is the case collect dirt automatically
agent_positions = [env.state.moving_entites[agent_idx].pos for agent_idx in range(self.n_agents)]
dirt_piles_positions = self.get_dirt_piles_positions(env)
if any([True for pos in agent_positions if pos in dirt_piles_positions]):
# Do Noop for agent that does not collect dirt
"""action = [np.array(5), np.array(5)]
# Execute real step in environment
for idx, pos in enumerate(agent_positions):
if pos in cleaned_dirt_piles.keys() and not cleaned_dirt_piles[pos]:
action[idx] = np.array(4)
# Collect dirt
_, next_obs, reward, done, info = env.step(action)
cleaned_dirt_piles[pos] = True
break"""
# Only simulate collecting the dirt
for idx, pos in enumerate(agent_positions):
if pos in self.get_dirt_piles_positions(env) and not cleaned_dirt_piles[pos]:
# print(env.state.entities["Agent"][idx], pos, idx, target_pile, ordered_dirt_piles)
# If dirt piles should be cleaned in a specific order
if ordered_dirt_piles:
if pos == ordered_dirt_piles[target_pile[idx]]:
reward[idx] += 1 # 1
cleaned_dirt_piles[pos] = True
# Set pointer to next dirt pile
self.update_target_pile(env, idx, target_pile)
break
else:
reward[idx] += 1 # 1
cleaned_dirt_piles[pos] = True
break
if all(cleaned_dirt_piles.values()):
done = True
return reward, done
def handle_finished_episode(self, obs):
with torch.inference_mode(False):
for ag_i, agent in enumerate(self.agents):
# Get states, actions, rewards and values from rollout buffer
(s, a, R, V) = agent.finish_episode()
# Calculate discounted return and advantage
G = cumulate_discount(R, self.cfg[nms.ALGORITHM]["gamma"])
if self.cfg[nms.ALGORITHM]["advantage"] == "Reinforce":
A = G
elif self.cfg[nms.ALGORITHM]["advantage"] == "Advantage-AC":
A = G - V # Actor-Critic Advantages
elif self.cfg[nms.ALGORITHM]["advantage"] == "TD-Advantage-AC":
with torch.no_grad():
A = R + self.cfg[nms.ALGORITHM]["gamma"] * np.append(V[1:], agent.vf(
self._as_torch(obs[ag_i]).view(-1).to(
torch.float32)).numpy()) - V # TD Actor-Critic Advantages
else:
print("Not a valid advantage option.")
exit()
rollout = (torch.tensor(x.copy()).to(torch.float32) for x in (s, a, G, A))
# Update policy and value net of agent with experience from rollout buffer
agent.train(*rollout)
@torch.no_grad()
def train_loop(self):
env = self.factory
if self.cfg[nms.ENV][nms.TRAIN_RENDER]:
env.render()
n_steps, max_steps = [self.cfg[nms.ALGORITHM][k] for k in [nms.N_STEPS, nms.MAX_STEPS]]
global_steps, episode = 0, 0
dirt_piles_positions = self.get_dirt_piles_positions(env)
used_actions = {i:0 for i in range(len(env.state.entities["Agent"][0]._actions))} # Assume both agents have the same actions
while global_steps < max_steps:
print(global_steps)
obs = env.reset() # !!!!!!!!Commented seems to work better? Only if a fixed spawnpoint is given
print([env.state.moving_entites[agent_idx].pos for agent_idx in range(self.n_agents)])
"""obs = list(obs.values())"""
obs = self.transform_observations(env)
done, rew_log = [False] * self.n_agents, 0
cleaned_dirt_piles = {pos: False for pos in dirt_piles_positions}
ordered_dirt_piles = self.get_ordered_dirt_piles(env)
target_pile = [partition[0] for partition in self.distribute_indices(env)] # pointer that points to the target pile for each agent. (point to same pile, point to different piles)
"""passed_fields = [[] for _ in range(self.n_agents)]"""
# Add Clean and Noop actions to agent actions so that they can be executed when the agent comes on a dirpile
"""for i in range(self.n_agents):
self.factory.state['Agent'][i].actions.extend([Clean(), Noop()])"""
while not all(done):
# 0="North", 1="East", 2="South", 3="West", 4="Clean", 5="Noop"
action = self.use_door_or_move(env, obs, cleaned_dirt_piles, target_pile) if self.doors_exist else self.get_actions(obs)
used_actions[int(action[0])] += 1
_, next_obs, reward, done, info = env.step(action)
if done:
print("DoneAtMaxStepsReached:", len(self.agents[0]._episode))
next_obs = self.transform_observations(env)
# Add small negative reward if agent has moved away from the target_pile
reward = self.reward_distance(env, obs, target_pile, reward)
# Check and handle if agent is on field with dirt
reward, done = self.handle_dirt(env, cleaned_dirt_piles, ordered_dirt_piles, target_pile, reward, done)
if n_steps != 0 and (global_steps + 1) % n_steps == 0:
print("max_steps reached")
done = True
done = [done] * self.n_agents if isinstance(done, bool) else done
for ag_i, agent in enumerate(self.agents):
# Add agent results into respective rollout buffers
agent._episode[-1] = (next_obs[ag_i], action[ag_i], reward[ag_i], agent._episode[-1][-1])
if self.cfg[nms.ENV][nms.TRAIN_RENDER]:
env.render()
obs = next_obs
if all(done): self.handle_finished_episode(obs)
global_steps += 1
rew_log += sum(reward)
if global_steps >= max_steps:
break
print(f'reward at episode: {episode} = {rew_log}')
self.reward_development.append(rew_log)
episode += 1
# Create value map
observations_shape = (max(t[0] for t in env.state.entities.floorlist) + 2, max(t[1] for t in env.state.entities.floorlist) + 2)
value_maps = [np.zeros(observations_shape) for _ in self.agents]
likeliest_action = [np.full(observations_shape, np.NaN) for _ in self.agents]
action_probabilities = [np.zeros((observations_shape[0],observations_shape[1], env.action_space[0].n)) for _ in self.agents]
for obs in self.get_all_observations(env):
"""obs = self._as_torch(obs).view(-1).to(torch.float32)"""
for idx, agent in enumerate(self.agents):
"""indices = np.where(obs[1] == 1) # Get agent position on grid (1 indicates the position)
x, y = indices[0][0], indices[1][0]"""
x, y = int(obs[0]), int(obs[1])
try:
value_maps[idx][x][y] = agent.vf(obs)
probs = agent.pi.distribution(obs).probs
likeliest_action[idx][x][y] = torch.argmax(probs) # get the likeliest action at the current agent position
action_probabilities[idx][x][y] = probs
except:
pass
print("=======Value Maps=======")
for agent_idx, vmap in enumerate(value_maps):
print(f"Value map of agent {agent_idx}:")
vmap = self._as_torch(vmap).round(decimals=4)
max_digits = max(len(str(vmap.max().item())), len(str(vmap.min().item())))
for idx, row in enumerate(vmap):
print(' '.join(f" {elem:>{max_digits+1}}" for elem in row.tolist()))
print("=======Likeliest Action=======")
for agent_idx, amap in enumerate(likeliest_action):
print(f"Likeliest action map of agent {agent_idx}:")
print(amap)
print("=======Action Probabilities=======")
for agent_idx, pmap in enumerate(action_probabilities):
print(f"Action probability map of agent {agent_idx}:")
for d in range(pmap.shape[0]):
row = '['
for r in range(pmap.shape[1]):
row += "[" + ', '.join(f"{x:7.4f}" for x in pmap[d, r]) + "]"
print(row + "]")
print("Used actions:", used_actions)
@torch.inference_mode(True)
def eval_loop(self, n_episodes, render=False):
env = self.eval_factory
if self.cfg[nms.ENV][nms.EVAL_RENDER]:
env.render()
episode, results = 0, []
dirt_piles_positions = self.get_dirt_piles_positions(env)
while episode < n_episodes:
obs = env.reset()
"""obs = list(obs.values())"""
obs = self.transform_observations(env)
done, rew_log, eps_rew = [False] * self.n_agents, 0, torch.zeros(self.n_agents)
cleaned_dirt_piles = {pos: False for pos in dirt_piles_positions}
ordered_dirt_piles = self.get_ordered_dirt_piles(env)
target_pile = [partition[0] for partition in self.distribute_indices(env)]
# Add Clean and Noop actions to agent actions so that they can be executed when the agent comes on a dirpile
"""for i in range(self.n_agents):
self.factory.state['Agent'][i].actions.extend([Clean(), Noop()])"""
while not all(done):
action = self.use_door_or_move(env, obs, cleaned_dirt_piles, target_pile, det=True) if self.doors_exist else self.execute_policy(obs) # zero exploration
print(action)
_, next_obs, reward, done, info = env.step(action)
if done:
print("DoneAtMaxStepsReached:", len(self.agents[0]._episode))
next_obs = self.transform_observations(env)
# Add small negative reward if agent has moved away from the target_pile
reward = self.reward_distance(env, obs, target_pile, reward)
# Check and handle if agent is on field with dirt
reward, done = self.handle_dirt(env, cleaned_dirt_piles, ordered_dirt_piles, target_pile, reward, done)
done = [done] * self.n_agents if isinstance(done, bool) else done
if self.cfg[nms.ENV][nms.EVAL_RENDER]:
env.render()
obs = next_obs
episode += 1
def plot_reward_development(self):
plt.plot(self.reward_development)
plt.title('Reward development')
plt.xlabel('Episode')
plt.ylabel('Reward')
plt.savefig("/Users/julian/Coding/Projects/PyCharmProjects/EDYS/study_out/two_rooms_one_door_modified_runs/reward_development.png")
plt.show()

View File

@ -0,0 +1,78 @@
import numpy as np; import torch as th; import scipy as sp; import gym
import os; from collections import deque; import matplotlib.pyplot as plt
from tqdm import tqdm
# RLLab Magic for calculating the discounted return G(t) = R(t) + gamma * R(t-1)
# cf. https://github.com/rll/rllab/blob/ba78e4c16dc492982e648f117875b22af3965579/rllab/misc/special.py#L107
cumulate_discount = lambda x, gamma: sp.signal.lfilter([1], [1, - gamma], x[::-1], axis=0)[::-1]
class Net(th.nn.Module):
def __init__(self, shape, activation, lr):
super().__init__()
self.net = th.nn.Sequential(*[ layer
for io, a in zip(zip(shape[:-1], shape[1:]), [activation] * (len(shape)-2) + [th.nn.Identity] )
for layer in [th.nn.Linear(*io), a()]])
self.optimizer = th.optim.Adam(self.net.parameters(), lr=lr)
class ValueNet(Net):
def __init__(self, obs_dim, hidden_sizes=[64,64], activation=th.nn.Tanh, lr=1e-3):
super().__init__([obs_dim] + hidden_sizes + [1], activation, lr)
def forward(self, obs): return self.net(obs)
def loss(self, states, returns): return ((returns - self(states))**2).mean()
class PolicyNet(Net):
def __init__(self, obs_dim, act_dim, hidden_sizes=[64,64], activation=th.nn.Tanh, lr=3e-4):
super().__init__([obs_dim] + hidden_sizes + [act_dim], activation, lr)
self.distribution = lambda obs: th.distributions.Categorical(logits=self.net(obs))
def forward(self, obs, act=None, det=False):
"""Given an observation: Returns policy distribution and probablilty for a given action
or Returns a sampled action and its corresponding probablilty"""
pi = self.distribution(obs)
if act is not None: return pi, pi.log_prob(act)
act = self.net(obs).argmax() if det else pi.sample() # sample from the learned distribution
return act, pi.log_prob(act)
def loss(self, states, actions, advantages):
_, logp = self.forward(states, actions)
loss = -(logp * advantages).mean()
return loss
class PolicyGradient:
""" Autonomous agent using vanilla policy gradient. """
def __init__(self, env, seed=42, gamma=0.99, agent_id=0, act_dim=None, obs_dim=None):
self.env = env; self.gamma = gamma; # Setup env and discount
th.manual_seed(seed);np.random.seed(seed) # Seed Torch, numpy and gym
# Keep track of previous rewards and performed steps to calcule the mean Return metric
self._episode, self.ep_returns, self.num_steps = [], deque(maxlen=100), 0
# Get observation and action shapes
if not obs_dim:
obs_size = env.observation_space.shape if len(env.state.entities.by_name("Agents")) == 1 \
else env.observation_space[agent_id].shape # Single agent case vs. multi-agent case
obs_dim = np.prod(obs_size);
if not act_dim: act_dim = env.action_space[agent_id].n
self.vf = ValueNet(obs_dim) # Setup Value Network (Critic)
self.pi = PolicyNet(obs_dim, act_dim) # Setup Policy Network (Actor)
def step(self, obs):
""" Given an observation, get action and probs from policy and values from critic"""
with th.no_grad(): (a, _), v = self.pi(obs), self.vf(obs)
self._episode.append((None,None,None,v))
return a.numpy()
def policy(self, obs, det=True): return self.pi(obs, det=det)[0].numpy()
def finish_episode(self):
"""Process self._episode & reset self.env, Returns (s,a,G,V)-Tuple and new inital state"""
s, a, R, V = (np.array(e) for e in zip(*self._episode)) # Get trajectories from rollout
self.ep_returns.append(sum(R)); self._episode = [] # Add epoisode return to buffer & reset
return (s,a,R,V) # state, action, Return, Value Tensors
def train(self, states, actions, returns, advantages): # Update policy weights
self.pi.optimizer.zero_grad(); self.vf.optimizer.zero_grad()# Reset optimizer
states = states.flatten(1,-1) # Reduce dimensionality to rollout_dim x input_dim
policy_loss = self.pi.loss(states, actions, advantages) # Calculate Policy loss
policy_loss.backward(); self.pi.optimizer.step() # Apply Policy loss
value_loss = self.vf.loss(states, returns) # Calculate Value loss
value_loss.backward(); self.vf.optimizer.step() # Apply Value loss

View File

@ -1,5 +1,5 @@
MOVEMENTS_VALID: float = -0.001 MOVEMENTS_VALID: float = -0.01 # default: -0.001
MOVEMENTS_FAIL: float = -0.05 MOVEMENTS_FAIL: float = -0.1 # default: -0.05
NOOP: float = -0.01 NOOP: float = -0.01
COLLISION: float = -0.5 COLLISION: float = -0.5
COLLISION_DONE: float = -1 COLLISION_DONE: float = -1

View File

@ -1,15 +1,19 @@
import copy
from pathlib import Path from pathlib import Path
from marl_factory_grid.algorithms.marl.a2c_dirt import A2C
from marl_factory_grid.algorithms.marl.iac import LoopIAC
from marl_factory_grid.algorithms.utils import load_yaml_file from marl_factory_grid.algorithms.utils import load_yaml_file
if __name__ == '__main__': if __name__ == '__main__':
cfg_path = Path('../marl_factory_grid/algorithms/marl/example_config.yaml') cfg_path = Path('../marl_factory_grid/algorithms/marl/configs/dirt_quadrant_config.yaml')
cfg = load_yaml_file(cfg_path) train_cfg = load_yaml_file(cfg_path)
# Use environment config with fixed spawnpoints for eval
eval_cfg = copy.deepcopy(train_cfg)
eval_cfg["env"]["env_name"] = "custom/dirt_quadrant" # Options: two_rooms_one_door_modified, dirt_quadrant
print("Training phase") print("Training phase")
agent = LoopIAC(cfg) agent = A2C(train_cfg, eval_cfg)
agent.train_loop() agent.train_loop()
agent.plot_reward_development()
print("Evaluation phase") print("Evaluation phase")
agent.eval_loop(10) agent.eval_loop(10)