added changes from code submission branch and coin entity

This commit is contained in:
Chanumask
2024-09-06 11:01:42 +02:00
parent 33e40deecf
commit 5476f617c6
42 changed files with 1429 additions and 68 deletions

View File

@@ -0,0 +1,34 @@
agent:
classname: marl_factory_grid.algorithms.rl.networks.RecurrentAC
n_agents: 2
obs_emb_size: 96
action_emb_size: 16
hidden_size_actor: 64
hidden_size_critic: 64
use_agent_embedding: False
env:
classname: marl_factory_grid.configs.custom
env_name: "custom/MultiAgentConfigs/dirt_quadrant_train_config"
n_agents: 2
max_steps: 250
pomdp_r: 2
stack_n_frames: 0
individual_rewards: True
train_render: False
eval_render: True
save_and_log: True
record: False
method: marl_factory_grid.algorithms.rl.LoopSEAC
algorithm:
gamma: 0.99
entropy_coef: 0.01
vf_coef: 0.05
n_steps: 0 # How much experience should be sampled at most (n-TD) until the next value and policy update is performed. Default 0: MC
max_steps: 200000
advantage: "Advantage-AC" # Options: "Advantage-AC", "TD-Advantage-AC", "Reinforce"
pile-order: "dynamic" # Use "dynamic" to see emergent phenomenon and "smart" to prevent it
pile-observability: "single" # Options: "single", "all"
pile_all_done: "shared" # Options: "single", "all" ("single" for training, "all" for eval), "shared"
auxiliary_piles: False # Option that is only considered when pile-order = "agents"
chunk-episode: 20000 # Chunk size. (0 = update networks with full episode at once)

View File

@@ -0,0 +1,35 @@
agent:
classname: marl_factory_grid.algorithms.rl.networks.RecurrentAC
n_agents: 2
obs_emb_size: 96
action_emb_size: 16
hidden_size_actor: 64
hidden_size_critic: 64
use_agent_embedding: False
env:
classname: marl_factory_grid.configs.custom
env_name: "custom/two_rooms_one_door_modified_train_config"
n_agents: 2
max_steps: 250
pomdp_r: 2
stack_n_frames: 0
individual_rewards: True
train_render: False
eval_render: True
save_and_log: True
record: False
method: marl_factory_grid.algorithms.rl.LoopSEAC
algorithm:
gamma: 0.99
entropy_coef: 0.01
vf_coef: 0.05
n_steps: 0 # How much experience should be sampled at most (n-TD) until the next value and policy update is performed. Default 0: MC
max_steps: 260000
advantage: "Advantage-AC" # Options: "Advantage-AC", "TD-Advantage-AC", "Reinforce"
pile-order: "agents" # Options: "fixed", "random", "none", "agents", "dynamic", "smart" (Use "fixed", "random" and "none" for single agent training and the other for multi agent inference)
pile-observability: "single" # Options: "single", "all"
pile_all_done: "distributed" # Options: "single", "all" ("single" for training, "all" and "distributed" for eval)
auxiliary_piles: True # Use True to see emergent phenomenon and False to prevent it
chunk-episode: 20000 # Chunk size. (0 = update networks with full episode at once)

View File

@@ -0,0 +1,34 @@
agent:
classname: marl_factory_grid.algorithms.rl.networks.RecurrentAC
n_agents: 1
obs_emb_size: 96
action_emb_size: 16
hidden_size_actor: 64
hidden_size_critic: 64
use_agent_embedding: False
env:
classname: marl_factory_grid.configs.custom
env_name: "custom/dirt_quadrant_train_config"
n_agents: 1
max_steps: 250
pomdp_r: 2
stack_n_frames: 0
individual_rewards: True
train_render: False
eval_render: True
save_and_log: True
record: False
method: marl_factory_grid.algorithms.rl.LoopSEAC
algorithm:
gamma: 0.99
entropy_coef: 0.01
vf_coef: 0.05
n_steps: 0 # How much experience should be sampled at most (n-TD) until the next value and policy update is performed. Default 0: MC
max_steps: 240000
advantage: "Advantage-AC" # Options: "Advantage-AC", "TD-Advantage-AC", "Reinforce"
pile-order: "fixed" # Options: "fixed", "random", "none", "agents", "dynamic", "smart" (Use "fixed", "random" and "none" for single agent training and the other for multi agent inference)
pile-observability: "single" # Options: "single", "all"
pile_all_done: "single" # Options: "single", "all" ("single" for training, "all" for eval)
auxiliary_piles: False # Option that is only considered when pile-order = "agents"
chunk-episode: 20000 # Chunk size. (0 = update networks with full episode at once)

View File

@@ -0,0 +1,8 @@
marl_factory_grid>environment>rules.py#SpawnEntity.on_reset()
marl_factory_grid>environment>rewards.py
marl_factory_grid>modules>clean_up>groups.py#DirtPiles.trigger_spawn()
marl_factory_grid>environment>rules.py#AgentSpawnRule
marl_factory_grid>utils>states.py#GameState.__init__()
marl_factory_grid>environment>factory.py>Factory#render
marl_factory_grid>environment>factory.py>Factory#set_recorder
marl_factory_grid>utils>renderer.py>Renderer#render

View File

@@ -0,0 +1,35 @@
agent:
classname: marl_factory_grid.algorithms.rl.networks.RecurrentAC
n_agents: 1
obs_emb_size: 96
action_emb_size: 16
hidden_size_actor: 64
hidden_size_critic: 64
use_agent_embedding: False
env:
classname: marl_factory_grid.configs.custom
env_name: "custom/two_rooms_one_door_modified_train_config"
n_agents: 1
max_steps: 250
pomdp_r: 2
stack_n_frames: 0
individual_rewards: True
train_render: False
eval_render: True
save_and_log: False
record: False
method: marl_factory_grid.algorithms.rl.LoopSEAC
algorithm:
gamma: 0.99
entropy_coef: 0.01
vf_coef: 0.05
n_steps: 0 # How much experience should be sampled at most (n-TD) until the next value and policy update is performed. Default 0: MC
max_steps: 260000
advantage: "Advantage-AC" # Options: "Advantage-AC", "TD-Advantage-AC", "Reinforce"
pile-order: "fixed" # Options: "fixed", "random", "none", "agents", "dynamic", "smart" (Use "fixed", "random" and "none" for single agent training and the other for multi agent inference)
pile-observability: "single" # Options: "single", "all"
pile_all_done: "single" # Options: "single", "all" ("single" for training, "all" for eval)
auxiliary_piles: False # Option that is only considered when pile-order = "agents"
chunk-episode: 20000 # Chunk size. (0 = update networks with full episode at once)