added changes from code submission branch and coin entity

This commit is contained in:
Chanumask
2024-09-06 11:01:42 +02:00
parent 33e40deecf
commit 5476f617c6
42 changed files with 1429 additions and 68 deletions

View File

@@ -1,7 +1,7 @@
from .quickstart import init
from marl_factory_grid.environment.factory import Factory
"""
Main module of the 'marl-factory-grid'-environment.
Main module of the 'rl-factory-grid'-environment.
Configure the :class:.Factory with any 'conf.yaml' file.
Examples can be found in :module:.levels .
"""

View File

@@ -1 +0,0 @@
from marl_factory_grid.algorithms.marl.memory import MARLActorCriticMemory

View File

@@ -0,0 +1 @@
from marl_factory_grid.algorithms.rl.memory import MARLActorCriticMemory

View File

@@ -0,0 +1,297 @@
import os
import torch
from typing import Union, List
import numpy as np
from tqdm import tqdm
from marl_factory_grid.algorithms.rl.base_a2c import PolicyGradient
from marl_factory_grid.algorithms.rl.constants import Names
from marl_factory_grid.algorithms.rl.utils import transform_observations, _as_torch, is_door_close, \
get_coin_piles_positions, update_target_pile, update_ordered_coin_piles, get_all_collected_coin_piles, \
distribute_indices, set_agents_spawnpoints, get_ordered_coin_piles, handle_finished_episode, save_configs, \
save_agent_models, get_all_observations, get_agents_positions
from marl_factory_grid.algorithms.utils import add_env_props
from marl_factory_grid.utils.plotting.plot_single_runs import plot_action_maps, plot_reward_development, \
create_info_maps
nms = Names
ListOrTensor = Union[List, torch.Tensor]
class A2C:
def __init__(self, train_cfg, eval_cfg):
self.results_path = None
self.agents = None
self.act_dim = None
self.obs_dim = None
self.factory = add_env_props(train_cfg)
self.eval_factory = add_env_props(eval_cfg)
self.__training = True
self.train_cfg = train_cfg
self.eval_cfg = eval_cfg
self.cfg = train_cfg
self.n_agents = train_cfg[nms.ENV][nms.N_AGENTS]
self.setup()
self.reward_development = []
self.action_probabilities = {agent_idx: [] for agent_idx in range(self.n_agents)}
def setup(self):
""" Initialize agents and create entry for run results according to configuration """
self.obs_dim = 2 + 2 * len(get_coin_piles_positions(self.factory)) if self.cfg[nms.ALGORITHM][
nms.PILE_OBSERVABILITY] == nms.ALL else 4
self.act_dim = 4 # The 4 movement directions
self.agents = [PolicyGradient(self.factory, agent_id=i, obs_dim=self.obs_dim, act_dim=self.act_dim) for i in
range(self.n_agents)]
if self.cfg[nms.ENV][nms.SAVE_AND_LOG]:
# Define study_out_path and check if it exists
base_dir = os.path.dirname(os.path.abspath(__file__)) # Directory of the script
study_out_path = os.path.join(base_dir, '../../../study_out')
study_out_path = os.path.abspath(study_out_path)
if not os.path.exists(study_out_path):
raise FileNotFoundError(f"The directory {study_out_path} does not exist.")
# Create results folder
runs = os.listdir(study_out_path)
run_numbers = [int(run[3:]) for run in runs if run[:3] == "run"]
next_run_number = max(run_numbers) + 1 if run_numbers else 0
self.results_path = os.path.join(study_out_path, f"run{next_run_number}")
os.mkdir(self.results_path)
# Save settings in results folder
save_configs(self.results_path, self.cfg, self.factory.conf, self.eval_factory.conf)
def set_cfg(self, eval=False):
if eval:
self.cfg = self.eval_cfg
else:
self.cfg = self.train_cfg
def load_agents(self, runs_list):
""" Initialize networks with parameters of already trained agents """
for idx, run in enumerate(runs_list):
run_path = f"./study_out/{run}"
self.agents[idx].pi.load_model_parameters(f"{run_path}/PolicyNet_model_parameters.pth")
self.agents[idx].vf.load_model_parameters(f"{run_path}/ValueNet_model_parameters.pth")
@torch.no_grad()
def train_loop(self):
""" Function for training agents """
env = self.factory
n_steps, max_steps = [self.cfg[nms.ALGORITHM][k] for k in [nms.N_STEPS, nms.MAX_STEPS]]
global_steps, episode = 0, 0
indices = distribute_indices(env, self.cfg, self.n_agents)
coin_piles_positions = get_coin_piles_positions(env)
target_pile = [partition[0] for partition in
indices] # list of pointers that point to the current target pile for each agent
collected_coin_piles = [{pos: False for pos in coin_piles_positions} for _ in range(self.n_agents)]
pbar = tqdm(total=max_steps)
while global_steps < max_steps:
_ = env.reset()
if self.cfg[nms.ENV][nms.TRAIN_RENDER]:
env.render()
set_agents_spawnpoints(env, self.n_agents)
ordered_coin_piles = get_ordered_coin_piles(env, collected_coin_piles, self.cfg, self.n_agents)
# Reset current target pile at episode begin if all piles have to be collected in one episode
if self.cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] == nms.ALL:
target_pile = [partition[0] for partition in indices]
collected_coin_piles = [{pos: False for pos in coin_piles_positions} for _ in range(self.n_agents)]
# Supply each agent with its local observation
obs = transform_observations(env, ordered_coin_piles, target_pile, self.cfg, self.n_agents)
done, rew_log = [False] * self.n_agents, 0
while not all(done):
action = self.use_door_or_move(env, obs, collected_coin_piles) \
if nms.DOORS in env.state.entities.keys() else self.get_actions(obs)
_, next_obs, reward, done, info = env.step(action)
next_obs = transform_observations(env, ordered_coin_piles, target_pile, self.cfg, self.n_agents)
# Handle case where agent is on field with coin
reward, done = self.handle_coin(env, collected_coin_piles, ordered_coin_piles, target_pile, indices,
reward, done)
if n_steps != 0 and (global_steps + 1) % n_steps == 0: done = True
done = [done] * self.n_agents if isinstance(done, bool) else done
for ag_i, agent in enumerate(self.agents):
if action[ag_i] in range(self.act_dim):
# Add agent results into respective rollout buffers
agent._episode[-1] = (next_obs[ag_i], action[ag_i], reward[ag_i], agent._episode[-1][-1])
# Visualize state update
if self.cfg[nms.ENV][nms.TRAIN_RENDER]: env.render()
obs = next_obs
if all(done): handle_finished_episode(obs, self.agents, self.cfg)
global_steps += 1
rew_log += sum(reward)
if global_steps >= max_steps: break
self.reward_development.append(rew_log)
episode += 1
pbar.update(global_steps - pbar.n)
pbar.close()
if self.cfg[nms.ENV][nms.SAVE_AND_LOG]:
plot_reward_development(self.reward_development, self.results_path)
create_info_maps(env, get_all_observations(env, self.cfg, self.n_agents),
get_coin_piles_positions(env), self.results_path, self.agents, self.act_dim, self)
save_agent_models(self.results_path, self.agents)
plot_action_maps(env, [self], self.results_path)
@torch.inference_mode(True)
def eval_loop(self, n_episodes):
""" Function for performing inference """
env = self.eval_factory
self.set_cfg(eval=True)
episode, results = 0, []
coin_piles_positions = get_coin_piles_positions(env)
indices = distribute_indices(env, self.cfg, self.n_agents)
target_pile = [partition[0] for partition in
indices] # list of pointers that point to the current target pile for each agent
if self.cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] == nms.DISTRIBUTED:
collected_coin_piles = [{coin_piles_positions[idx]: False for idx in indices[i]} for i in
range(self.n_agents)]
else: collected_coin_piles = [{pos: False for pos in coin_piles_positions} for _ in range(self.n_agents)]
while episode < n_episodes:
_ = env.reset()
set_agents_spawnpoints(env, self.n_agents)
if self.cfg[nms.ENV][nms.EVAL_RENDER]:
# Don't render auxiliary piles
if self.cfg[nms.ALGORITHM][nms.AUXILIARY_PILES]:
auxiliary_piles = [pile for idx, pile in enumerate(env.state.entities[nms.COIN_PILES]) if
idx % 2 == 0]
for pile in auxiliary_piles:
pile.set_new_amount(0)
env.render()
env._renderer.fps = 5 # Slow down agent movement
# Reset current target pile at episode begin if all piles have to be collected in one episode
if self.cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] in [nms.ALL, nms.DISTRIBUTED, nms.SHARED]:
target_pile = [partition[0] for partition in indices]
if self.cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] == nms.DISTRIBUTED:
collected_coin_piles = [{coin_piles_positions[idx]: False for idx in indices[i]} for i in
range(self.n_agents)]
else: collected_coin_piles = [{pos: False for pos in coin_piles_positions} for _ in range(self.n_agents)]
ordered_coin_piles = get_ordered_coin_piles(env, collected_coin_piles, self.cfg, self.n_agents)
# Supply each agent with its local observation
obs = transform_observations(env, ordered_coin_piles, target_pile, self.cfg, self.n_agents)
done, rew_log, eps_rew = [False] * self.n_agents, 0, torch.zeros(self.n_agents)
while not all(done):
action = self.use_door_or_move(env, obs, collected_coin_piles, det=True) \
if nms.DOORS in env.state.entities.keys() else self.execute_policy(obs, env,
collected_coin_piles) # zero exploration
_, next_obs, reward, done, info = env.step(action)
# Handle case where agent is on field with coin
reward, done = self.handle_coin(env, collected_coin_piles, ordered_coin_piles, target_pile, indices,
reward, done)
# Get transformed next_obs that might have been updated because of handle_coin
next_obs = transform_observations(env, ordered_coin_piles, target_pile, self.cfg, self.n_agents)
done = [done] * self.n_agents if isinstance(done, bool) else done
if self.cfg[nms.ENV][nms.EVAL_RENDER]: env.render()
obs = next_obs
episode += 1
# -------------------------------------- HELPER FUNCTIONS ------------------------------------------------- #
def get_actions(self, observations) -> ListOrTensor:
""" Given local observations, get actions for both agents """
actions = [agent.step(_as_torch(observations[ag_i]).view(-1).to(torch.float32)) for ag_i, agent in
enumerate(self.agents)]
return actions
def execute_policy(self, observations, env, collected_coin_piles) -> ListOrTensor:
""" Execute agent policies deterministically for inference """
actions = [agent.policy(_as_torch(observations[ag_i]).view(-1).to(torch.float32)) for ag_i, agent in
enumerate(self.agents)]
for agent_idx in range(self.n_agents):
if all(collected_coin_piles[agent_idx].values()):
actions[agent_idx] = np.array(next(
action_i for action_i, a in enumerate(env.state[nms.AGENT][agent_idx].actions) if
a.name == nms.NOOP))
return actions
def use_door_or_move(self, env, obs, collected_coin_piles, det=False):
""" Function that handles automatic actions like door opening and forced Noop"""
action = []
for agent_idx, agent in enumerate(self.agents):
agent_obs = _as_torch((obs)[agent_idx]).view(-1).to(torch.float32)
# Use Noop operation if agent already reached its target. (Only relevant for two-rooms setting)
if all(collected_coin_piles[agent_idx].values()):
action.append(next(action_i for action_i, a in enumerate(env.state[nms.AGENT][agent_idx].actions) if
a.name == nms.NOOP))
if not det:
# Include agent experience entry manually
agent._episode.append((None, None, None, agent.vf(agent_obs)))
else:
if door := is_door_close(env, agent_idx):
if door.is_closed:
action.append(next(
action_i for action_i, a in enumerate(env.state[nms.AGENT][agent_idx].actions) if
a.name == nms.USE_DOOR))
# Don't include action in agent experience
else:
if det: action.append(int(agent.pi(agent_obs, det=True)[0]))
else: action.append(int(agent.step(agent_obs)))
else:
if det: action.append(int(agent.pi(agent_obs, det=True)[0]))
else: action.append(int(agent.step(agent_obs)))
return action
def handle_coin(self, env, collected_coin_piles, ordered_coin_piles, target_pile, indices, reward, done):
""" Check if agent moved on field with coin. If that is the case collect coin automatically """
agents_positions = get_agents_positions(env, self.n_agents)
coin_piles_positions = get_coin_piles_positions(env)
if any([True for pos in agents_positions if pos in coin_piles_positions]):
# Only simulate collecting the coin
for idx, pos in enumerate(agents_positions):
if pos in collected_coin_piles[idx].keys() and not collected_coin_piles[idx][pos]:
# If coin piles should be collected in a specific order
if ordered_coin_piles[idx]:
if pos == ordered_coin_piles[idx][target_pile[idx]]:
reward[idx] += 50
collected_coin_piles[idx][pos] = True
# Set pointer to next coin pile
update_target_pile(env, idx, target_pile, indices, self.cfg)
update_ordered_coin_piles(idx, collected_coin_piles, ordered_coin_piles, env,
self.cfg, self.n_agents)
if self.cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] == nms.SINGLE:
done = True
if all(collected_coin_piles[idx].values()):
# Reset collected_coin_piles indicator
for pos in coin_piles_positions:
collected_coin_piles[idx][pos] = False
else:
reward[idx] += 50
collected_coin_piles[idx][pos] = True
# Indicate that renderer can hide coin pile
coin_at_position = env.state[nms.COIN_PILES].by_pos(pos)
coin_at_position[0].set_new_amount(0)
if self.cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] in [nms.ALL, nms.DISTRIBUTED]:
if all([all(collected_coin_piles[i].values()) for i in range(self.n_agents)]):
done = True
elif self.cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] == nms.SHARED:
# End episode if both agents together have collected all coin piles
if all(get_all_collected_coin_piles(coin_piles_positions, collected_coin_piles, self.n_agents).values()):
done = True
return reward, done

View File

@@ -0,0 +1,112 @@
import numpy as np
import torch as th
import scipy as sp
from collections import deque
from torch import nn
cumulate_discount = lambda x, gamma: sp.signal.lfilter([1], [1, - gamma], x[::-1], axis=0)[::-1]
class Net(th.nn.Module):
def __init__(self, shape, activation, lr):
super().__init__()
self.net = th.nn.Sequential(*[layer
for io, a in zip(zip(shape[:-1], shape[1:]),
[activation] * (len(shape) - 2) + [th.nn.Identity])
for layer in [th.nn.Linear(*io), a()]])
self.optimizer = th.optim.Adam(self.net.parameters(), lr=lr)
# Initialize weights uniformly, so that for the policy net all actions have approximately the same
# probability in the beginning
for module in self.modules():
if isinstance(module, nn.Linear):
nn.init.uniform_(module.weight, a=-0.1, b=0.1)
if module.bias is not None:
nn.init.uniform_(module.bias, a=-0.1, b=0.1)
def save_model(self, path):
th.save(self.net, f"{path}/{self.__class__.__name__}_model.pth")
def save_model_parameters(self, path):
th.save(self.net.state_dict(), f"{path}/{self.__class__.__name__}_model_parameters.pth")
def load_model_parameters(self, path):
self.net.load_state_dict(th.load(path))
self.net.eval()
class ValueNet(Net):
def __init__(self, obs_dim, hidden_sizes=[64, 64], activation=th.nn.ReLU, lr=1e-3):
super().__init__([obs_dim] + hidden_sizes + [1], activation, lr)
def forward(self, obs): return self.net(obs)
def loss(self, states, returns): return ((returns - self(states)) ** 2).mean()
class PolicyNet(Net):
def __init__(self, obs_dim, act_dim, hidden_sizes=[64, 64], activation=th.nn.Tanh, lr=3e-4):
super().__init__([obs_dim] + hidden_sizes + [act_dim], activation, lr)
self.distribution = lambda obs: th.distributions.Categorical(logits=self.net(obs))
def forward(self, obs, act=None, det=False):
"""Given an observation: Returns policy distribution and probablilty for a given action
or Returns a sampled action and its corresponding probablilty"""
pi = self.distribution(obs)
if act is not None: return pi, pi.log_prob(act)
act = self.net(obs).argmax() if det else pi.sample() # sample from the learned distribution
return act, pi.log_prob(act)
def loss(self, states, actions, advantages):
_, logp = self.forward(states, actions)
loss = -(logp * advantages).mean()
return loss
class PolicyGradient:
""" Autonomous agent using vanilla policy gradient. """
def __init__(self, env, seed=42, gamma=0.99, agent_id=0, act_dim=None, obs_dim=None):
self.env = env
self.gamma = gamma # Setup env and discount
th.manual_seed(seed)
np.random.seed(seed) # Seed Torch, numpy and gym
# Keep track of previous rewards and performed steps to calcule the mean Return metric
self._episode, self.ep_returns, self.num_steps = [], deque(maxlen=100), 0
# Get observation and action shapes
if not obs_dim:
obs_size = env.observation_space.shape if len(env.state.entities.by_name("Agents")) == 1 \
else env.observation_space[agent_id].shape # Single agent case vs. multi-agent case
obs_dim = np.prod(obs_size)
if not act_dim:
act_dim = env.action_space[agent_id].n
self.vf = ValueNet(obs_dim) # Setup Value Network (Critic)
self.pi = PolicyNet(obs_dim, act_dim) # Setup Policy Network (Actor)
def step(self, obs):
""" Given an observation, get action and probs from policy and values from critic"""
with th.no_grad():
(a, _), v = self.pi(obs), self.vf(obs)
self._episode.append((None, None, None, v))
return a.numpy()
def policy(self, obs, det=True):
return self.pi(obs, det=det)[0].numpy()
def finish_episode(self):
"""Process self._episode & reset self.env, Returns (s,a,G,V)-Tuple and new inital state"""
s, a, r, v = (np.array(e) for e in zip(*self._episode)) # Get trajectories from rollout
self.ep_returns.append(sum(r))
self._episode = [] # Add episode return to buffer & reset
return s, a, r, v # state, action, Return, Value Tensors
def train(self, states, actions, returns, advantages): # Update policy weights
self.pi.optimizer.zero_grad()
self.vf.optimizer.zero_grad() # Reset optimizer
states = states.flatten(1, -1) # Reduce dimensionality to rollout_dim x input_dim
policy_loss = self.pi.loss(states, actions, advantages) # Calculate Policy loss
policy_loss.backward()
self.pi.optimizer.step() # Apply Policy loss
value_loss = self.vf.loss(states, returns) # Calculate Value loss
value_loss.backward()
self.vf.optimizer.step() # Apply Value loss

View File

@@ -2,7 +2,7 @@ import torch
from typing import Union, List, Dict
import numpy as np
from torch.distributions import Categorical
from marl_factory_grid.algorithms.marl.memory import MARLActorCriticMemory
from marl_factory_grid.algorithms.rl.memory import MARLActorCriticMemory
from marl_factory_grid.algorithms.utils import add_env_props, instantiate_class
from pathlib import Path
import pandas as pd

View File

@@ -1,5 +1,5 @@
agent:
classname: marl_factory_grid.algorithms.marl.networks.RecurrentAC
classname: marl_factory_grid.algorithms.rl.networks.RecurrentAC
n_agents: 2
obs_emb_size: 96
action_emb_size: 16
@@ -18,7 +18,7 @@ env:
eval_render: True
save_and_log: True
record: False
method: marl_factory_grid.algorithms.marl.LoopSEAC
method: marl_factory_grid.algorithms.rl.LoopSEAC
algorithm:
gamma: 0.99
entropy_coef: 0.01

View File

@@ -1,5 +1,5 @@
agent:
classname: marl_factory_grid.algorithms.marl.networks.RecurrentAC
classname: marl_factory_grid.algorithms.rl.networks.RecurrentAC
n_agents: 2
obs_emb_size: 96
action_emb_size: 16
@@ -18,7 +18,7 @@ env:
eval_render: True
save_and_log: True
record: False
method: marl_factory_grid.algorithms.marl.LoopSEAC
method: marl_factory_grid.algorithms.rl.LoopSEAC
algorithm:
gamma: 0.99
entropy_coef: 0.01

View File

@@ -1,5 +1,5 @@
agent:
classname: marl_factory_grid.algorithms.marl.networks.RecurrentAC
classname: marl_factory_grid.algorithms.rl.networks.RecurrentAC
n_agents: 1
obs_emb_size: 96
action_emb_size: 16
@@ -18,7 +18,7 @@ env:
eval_render: True
save_and_log: True
record: False
method: marl_factory_grid.algorithms.marl.LoopSEAC
method: marl_factory_grid.algorithms.rl.LoopSEAC
algorithm:
gamma: 0.99
entropy_coef: 0.01

View File

@@ -1,5 +1,5 @@
agent:
classname: marl_factory_grid.algorithms.marl.networks.RecurrentAC
classname: marl_factory_grid.algorithms.rl.networks.RecurrentAC
n_agents: 1
obs_emb_size: 96
action_emb_size: 16
@@ -18,7 +18,7 @@ env:
eval_render: True
save_and_log: False
record: False
method: marl_factory_grid.algorithms.marl.LoopSEAC
method: marl_factory_grid.algorithms.rl.LoopSEAC
algorithm:
gamma: 0.99
entropy_coef: 0.01

View File

@@ -0,0 +1,37 @@
class Names:
ENV = 'env'
ENV_NAME = 'env_name'
N_AGENTS = 'n_agents'
ALGORITHM = 'algorithm'
MAX_STEPS = 'max_steps'
N_STEPS = 'n_steps'
TRAIN_RENDER = 'train_render'
EVAL_RENDER = 'eval_render'
AGENT = 'Agent'
PILE_OBSERVABILITY = 'pile-observability'
PILE_ORDER = 'pile-order'
ALL = 'all'
FIXED = 'fixed'
AGENTS = 'agents'
DYNAMIC = 'dynamic'
SMART = 'smart'
DIRT_PILES = 'DirtPiles'
COIN_PILES = 'CoinPiles'
AUXILIARY_PILES = "auxiliary_piles"
DOORS = 'Doors'
DOOR = 'Door'
GAMMA = 'gamma'
ADVANTAGE = 'advantage'
REINFORCE = 'reinforce'
ADVANTAGE_AC = "Advantage-AC"
TD_ADVANTAGE_AC = "TD-Advantage-AC"
CHUNK_EPISODE = 'chunk-episode'
POS_POINTER = 'pos_pointer'
POSITIONS = 'positions'
SAVE_AND_LOG = 'save_and_log'
NOOP = 'Noop'
USE_DOOR = 'use_door'
PILE_ALL_DONE = 'pile_all_done'
SINGLE = 'single'
DISTRIBUTED = 'distributed'
SHARED = 'shared'

View File

@@ -1,9 +1,9 @@
import torch
from marl_factory_grid.algorithms.marl.base_ac import BaseActorCritic, nms
from marl_factory_grid.algorithms.rl.base_ac import BaseActorCritic, nms
from marl_factory_grid.algorithms.utils import instantiate_class
from pathlib import Path
from natsort import natsorted
from marl_factory_grid.algorithms.marl.memory import MARLActorCriticMemory
from marl_factory_grid.algorithms.rl.memory import MARLActorCriticMemory
class LoopIAC(BaseActorCritic):

View File

@@ -1,6 +1,6 @@
from marl_factory_grid.algorithms.marl.base_ac import Names as nms
from marl_factory_grid.algorithms.marl.snac import LoopSNAC
from marl_factory_grid.algorithms.marl.memory import MARLActorCriticMemory
from marl_factory_grid.algorithms.rl.base_ac import Names as nms
from marl_factory_grid.algorithms.rl.snac import LoopSNAC
from marl_factory_grid.algorithms.rl.memory import MARLActorCriticMemory
import torch
from torch.distributions import Categorical
from marl_factory_grid.algorithms.utils import instantiate_class

View File

@@ -1,8 +1,8 @@
import torch
from torch.distributions import Categorical
from marl_factory_grid.algorithms.marl.iac import LoopIAC
from marl_factory_grid.algorithms.marl.base_ac import nms
from marl_factory_grid.algorithms.marl.memory import MARLActorCriticMemory
from marl_factory_grid.algorithms.rl.iac import LoopIAC
from marl_factory_grid.algorithms.rl.base_ac import nms
from marl_factory_grid.algorithms.rl.memory import MARLActorCriticMemory
class LoopSEAC(LoopIAC):

View File

@@ -1,5 +1,5 @@
from marl_factory_grid.algorithms.marl.base_ac import BaseActorCritic
from marl_factory_grid.algorithms.marl.base_ac import nms
from marl_factory_grid.algorithms.rl.base_ac import BaseActorCritic
from marl_factory_grid.algorithms.rl.base_ac import nms
import torch
from torch.distributions import Categorical
from pathlib import Path

View File

@@ -0,0 +1,337 @@
import copy
from typing import List
import numpy as np
import torch
from marl_factory_grid.algorithms.rl.constants import Names as nms
from marl_factory_grid.algorithms.rl.base_a2c import cumulate_discount
def _as_torch(x):
""" Helper function to convert different list types to a torch tensor """
if isinstance(x, np.ndarray):
return torch.from_numpy(x)
elif isinstance(x, List):
return torch.tensor(x)
elif isinstance(x, (int, float)):
return torch.tensor([x])
return x
def transform_observations(env, ordered_coins, target_coin, cfg, n_agents):
""" Function that extracts local observations from global state
Requires that agents have observations -CoinPiles and -Self (cf. environment configs) """
agents_positions = get_agents_positions(env, n_agents)
coin_observability_is_all = cfg[nms.ALGORITHM][nms.PILE_OBSERVABILITY] == nms.ALL
if coin_observability_is_all:
trans_obs = [torch.zeros(2 + 2 * len(ordered_coins[0])) for _ in range(len(agents_positions))]
else:
# Only show current target pile
trans_obs = [torch.zeros(4) for _ in range(len(agents_positions))]
for i, pos in enumerate(agents_positions):
agent_x, agent_y = pos[0], pos[1]
trans_obs[i][0] = agent_x
trans_obs[i][1] = agent_y
idx = 2
if coin_observability_is_all:
for coin_pos in ordered_coins[i]:
trans_obs[i][idx] = coin_pos[0]
trans_obs[i][idx + 1] = coin_pos[1]
idx += 2
else:
trans_obs[i][2] = ordered_coins[i][target_coin[i]][0]
trans_obs[i][3] = ordered_coins[i][target_coin[i]][1]
return trans_obs
def get_all_observations(env, cfg, n_agents):
""" Helper function that returns all possible agent observations """
coins_positions = [env.state.entities[nms.COIN_PILES][pile_idx].pos for pile_idx in
range(len(env.state.entities[nms.COIN_PILES]))]
if cfg[nms.ALGORITHM][nms.PILE_OBSERVABILITY] == nms.ALL:
obs = [torch.zeros(2 + 2 * len(coins_positions))]
observations = [[]]
# Fill in pile positions
idx = 2
for pile_pos in coins_positions:
obs[0][idx] = pile_pos[0]
obs[0][idx + 1] = pile_pos[1]
idx += 2
else:
# Have multiple observation layers of the map for each coin pile one
obs = [torch.zeros(4) for _ in range(n_agents) for _ in coins_positions]
observations = [[] for _ in coins_positions]
for idx, pile_pos in enumerate(coins_positions):
obs[idx][2] = pile_pos[0]
obs[idx][3] = pile_pos[1]
valid_agent_positions = env.state.entities.floorlist
for idx, pos in enumerate(valid_agent_positions):
for obs_layer in range(len(obs)):
observation = copy.deepcopy(obs[obs_layer])
observation[0] = pos[0]
observation[1] = pos[1]
observations[obs_layer].append(observation)
return observations
def get_coin_piles_positions(env):
""" Get positions of coin piles on the map """
return [env.state.entities[nms.COIN_PILES][pile_idx].pos for pile_idx in
range(len(env.state.entities[nms.COIN_PILES]))]
def get_agents_positions(env, n_agents):
""" Get positions of agents on the map """
return [env.state.moving_entites[agent_idx].pos for agent_idx in range(n_agents)]
def get_ordered_coin_piles(env, collected_coins, cfg, n_agents):
""" This function determines in which order the agents should collect the coin piles
Each agent can have its individual pile order """
ordered_coin_piles = [[] for _ in range(n_agents)]
coin_piles_positions = get_coin_piles_positions(env)
agents_positions = get_agents_positions(env, n_agents)
for agent_idx in range(n_agents):
if cfg[nms.ALGORITHM][nms.PILE_ORDER] in [nms.FIXED, nms.AGENTS]:
ordered_coin_piles[agent_idx] = coin_piles_positions
elif cfg[nms.ALGORITHM][nms.PILE_ORDER] in [nms.SMART, nms.DYNAMIC]:
# Calculate distances for remaining unvisited coin piles
remaining_target_piles = [pos for pos, value in collected_coins[agent_idx].items() if not value]
pile_distances = {pos: 0 for pos in remaining_target_piles}
agent_pos = agents_positions[agent_idx]
for pos in remaining_target_piles:
pile_distances[pos] = np.abs(agent_pos[0] - pos[0]) + np.abs(agent_pos[1] - pos[1])
if cfg[nms.ALGORITHM][nms.PILE_ORDER] == nms.SMART:
# Check if there is an agent on the direct path to any of the remaining coin piles
for pile_pos in remaining_target_piles:
for other_pos in agents_positions:
if other_pos != agent_pos:
if agent_pos[0] == other_pos[0] == pile_pos[0] or agent_pos[1] == other_pos[1] == pile_pos[
1]:
# Get the line between the agent and the target
path = bresenham(agent_pos[0], agent_pos[1], pile_pos[0], pile_pos[1])
# Check if the entity lies on the path between the agent and the target
if other_pos in path:
pile_distances[pile_pos] += np.abs(agent_pos[0] - other_pos[0]) + np.abs(
agent_pos[1] - other_pos[1])
sorted_pile_distances = dict(sorted(pile_distances.items(), key=lambda item: item[1]))
# Insert already visited coin piles
ordered_coin_piles[agent_idx] = [pos for pos in coin_piles_positions if pos not in remaining_target_piles]
# Fill up with sorted positions
for pos in sorted_pile_distances.keys():
ordered_coin_piles[agent_idx].append(pos)
else:
print("Not a valid pile order option.")
exit()
return ordered_coin_piles
def bresenham(x0, y0, x1, y1):
"""Bresenham's line algorithm to get the coordinates of a line between two points."""
dx = np.abs(x1 - x0)
dy = np.abs(y1 - y0)
sx = 1 if x0 < x1 else -1
sy = 1 if y0 < y1 else -1
err = dx - dy
coordinates = []
while True:
coordinates.append((x0, y0))
if x0 == x1 and y0 == y1:
break
e2 = 2 * err
if e2 > -dy:
err -= dy
x0 += sx
if e2 < dx:
err += dx
y0 += sy
return coordinates
def update_ordered_coin_piles(agent_idx, collected_coin_piles, ordered_coin_piles, env, cfg, n_agents):
""" Update the order of the remaining coin piles """
# Only update ordered_coin_pile for agent that reached its target pile
updated_ordered_coin_piles = get_ordered_coin_piles(env, collected_coin_piles, cfg, n_agents)
for i in range(len(ordered_coin_piles[agent_idx])):
ordered_coin_piles[agent_idx][i] = updated_ordered_coin_piles[agent_idx][i]
def distribute_indices(env, cfg, n_agents):
""" Distribute coin piles evenly among the agents """
indices = []
n_coin_piles = len(get_coin_piles_positions(env))
agents_positions = get_agents_positions(env, n_agents)
if n_coin_piles == 1 or cfg[nms.ALGORITHM][nms.PILE_ORDER] in [nms.FIXED, nms.DYNAMIC, nms.SMART]:
indices = [[0] for _ in range(n_agents)]
else:
base_count = n_coin_piles // n_agents
remainder = n_coin_piles % n_agents
start_index = 0
for i in range(n_agents):
# Add an extra index to the first 'remainder' objects
end_index = start_index + base_count + (1 if i < remainder else 0)
indices.append(list(range(start_index, end_index)))
start_index = end_index
# Static form: auxiliary pile, primary pile, auxiliary pile, ...
# -> Starting with index 0 even piles are auxiliary piles, odd piles are primary piles
if cfg[nms.ALGORITHM][nms.AUXILIARY_PILES] and nms.DOORS in env.state.entities.keys():
door_positions = [door.pos for door in env.state.entities[nms.DOORS]]
distances = {door_pos: [] for door_pos in door_positions}
# Calculate distance of every agent to every door
for door_pos in door_positions:
for agent_pos in agents_positions:
distances[door_pos].append(np.abs(door_pos[0] - agent_pos[0]) + np.abs(door_pos[1] - agent_pos[1]))
def duplicate_indices(lst, item):
return [i for i, x in enumerate(lst) if x == item]
# Get agent indices of agents with same distance to door
affected_agents = {door_pos: {} for door_pos in door_positions}
for door_pos in distances.keys():
dist = distances[door_pos]
dist_set = set(dist)
for d in dist_set:
affected_agents[door_pos][str(d)] = duplicate_indices(dist, d)
updated_indices = []
for door_pos, agent_distances in affected_agents.items():
if len(agent_distances) == 0:
# Remove auxiliary piles for all agents
# (In config, we defined every pile with an even numbered index to be an auxiliary pile)
updated_indices = [[ele for ele in lst if ele % 2 != 0] for lst in indices]
else:
for distance, agent_indices in agent_distances.items():
# For each distance group, pick one random agent to keep the auxiliary pile
# selected_agent = np.random.choice(agent_indices)
selected_agent = 0
for agent_idx in agent_indices:
if agent_idx == selected_agent:
updated_indices.append(indices[agent_idx])
else:
updated_indices.append([ele for ele in indices[agent_idx] if ele % 2 != 0])
indices = updated_indices
return indices
def update_target_pile(env, agent_idx, target_pile, indices, cfg):
""" Get the next target pile for a given agent """
if cfg[nms.ALGORITHM][nms.PILE_ORDER] in [nms.FIXED, nms.DYNAMIC, nms.SMART]:
if target_pile[agent_idx] + 1 < len(get_coin_piles_positions(env)):
target_pile[agent_idx] += 1
else:
target_pile[agent_idx] = 0
else:
if target_pile[agent_idx] + 1 in indices[agent_idx]:
target_pile[agent_idx] += 1
def is_door_close(env, agent_idx):
""" Checks whether the agent is close to a door """
neighbourhood = [y for x in env.state.entities.neighboring_positions(env.state[nms.AGENT][agent_idx].pos)
for y in env.state.entities.pos_dict[x] if nms.DOOR in y.name]
if neighbourhood:
return neighbourhood[0]
def get_all_collected_coin_piles(coin_piles_positions, collected_coin_piles, n_agents):
""" Returns all coin piles collected by any agent """
meta_collected_coin_piles = {pos: False for pos in coin_piles_positions}
for agent_idx in range(n_agents):
for (pos, collected) in collected_coin_piles[agent_idx].items():
if collected:
meta_collected_coin_piles[pos] = True
return meta_collected_coin_piles
def handle_finished_episode(obs, agents, cfg):
""" Finish up episode, calculate advantages and perform policy net and value net updates"""
with torch.inference_mode(False):
for ag_i, agent in enumerate(agents):
# Get states, actions, rewards and values from rollout buffer
data = agent.finish_episode()
# Chunk episode data, such that there will be no memory failure for very long episodes
chunks = split_into_chunks(data, cfg)
for (s, a, R, V) in chunks:
# Calculate discounted return and advantage
G = cumulate_discount(R, cfg[nms.ALGORITHM][nms.GAMMA])
if cfg[nms.ALGORITHM][nms.ADVANTAGE] == nms.REINFORCE:
A = G
elif cfg[nms.ALGORITHM][nms.ADVANTAGE] == nms.ADVANTAGE_AC:
A = G - V # Actor-Critic Advantages
elif cfg[nms.ALGORITHM][nms.ADVANTAGE] == nms.TD_ADVANTAGE_AC:
with torch.no_grad():
A = R + cfg[nms.ALGORITHM][nms.GAMMA] * np.append(V[1:], agent.vf(
_as_torch(obs[ag_i]).view(-1).to(
torch.float32)).numpy()) - V # TD Actor-Critic Advantages
else:
print("Not a valid advantage option.")
exit()
rollout = (torch.tensor(x.copy()).to(torch.float32) for x in (s, a, G, A))
# Update policy and value net of agent with experience from rollout buffer
agent.train(*rollout)
def split_into_chunks(data_tuple, cfg):
""" Chunks episode data into approximately equal sized chunks to prevent system memory failure from overload """
result = [data_tuple]
chunk_size = cfg[nms.ALGORITHM][nms.CHUNK_EPISODE]
if chunk_size > 0:
# Get the maximum length of the lists in the tuple to handle different lengths
max_length = max(len(lst) for lst in data_tuple)
# Prepare a list to store the result
result = []
# Split each list into chunks and add them to the result
for i in range(0, max_length, chunk_size):
# Create a sublist containing the ith chunk from each list
sublist = [lst[i:i + chunk_size] for lst in data_tuple if i < len(lst)]
result.append(sublist)
return result
def set_agents_spawnpoints(env, n_agents):
""" Tell environment where the agents should spawn in the next episode """
for agent_idx in range(n_agents):
agent_name = list(env.state.agents_conf.keys())[agent_idx]
current_pos_pointer = env.state.agents_conf[agent_name][nms.POS_POINTER]
# Making the reset dependent on the number of spawnpoints and not the number of coinpiles allows
# for having multiple subsequent spawnpoints with the same target pile
if current_pos_pointer == len(env.state.agents_conf[agent_name][nms.POSITIONS]) - 1:
env.state.agents_conf[agent_name][nms.POS_POINTER] = 0
else:
env.state.agents_conf[agent_name][nms.POS_POINTER] += 1
def save_configs(results_path, cfg, factory_conf, eval_factory_conf):
""" Save configurations for logging purposes """
with open(f"{results_path}/MARL_config.txt", "w") as txt_file:
txt_file.write(str(cfg))
with open(f"{results_path}/train_env_config.txt", "w") as txt_file:
txt_file.write(str(factory_conf))
with open(f"{results_path}/eval_env_config.txt", "w") as txt_file:
txt_file.write(str(eval_factory_conf))
def save_agent_models(results_path, agents):
""" Save model parameters after training """
for idx, agent in enumerate(agents):
agent.pi.save_model_parameters(results_path)
agent.vf.save_model_parameters(results_path)

View File

@@ -0,0 +1,40 @@
from marl_factory_grid.algorithms.static.TSP_base_agent import TSPBaseAgent
from marl_factory_grid.modules.coins import constants as c
from marl_factory_grid.environment import constants as e
future_planning = 7
class TSPCoinAgent(TSPBaseAgent):
def __init__(self, *args, **kwargs):
"""
Initializes a TSPCoinAgent that aims to collect coins in the environment.
"""
super(TSPCoinAgent, self).__init__(*args, **kwargs)
self.fallback_action = e.NOOP
def predict(self, *_, **__):
"""
Predicts the next action based on the presence of coins in the environment.
:return: Predicted action.
:rtype: int
"""
coin_at_position = self._env.state[c.COIN].by_pos(self.state.pos)
if coin_at_position:
# Translate the action_object to an integer to have the same output as any other model
action = c.COLLECT
elif door := self._door_is_close(self._env.state):
action = self._use_door_or_move(door, c.COIN)
else:
action = self._predict_move(c.COIN)
self.action_list.append(action)
# Translate the action_object to an integer to have the same output as any other model
try:
action_obj = next(action_i for action_i, a in enumerate(self.state.actions) if a.name == action)
except (StopIteration, UnboundLocalError):
print('Will not happen')
raise EnvironmentError
return action_obj

View File

@@ -40,10 +40,27 @@ Agents:
# - DropOffLocations
# - Maintainers
# Clones: 0
Target test agent:
# Target test agent:
# Actions:
# - Noop
# - Charge
# - DoorUse
# - Move8
# Observations:
# - Combined:
# - Other
# - Walls
# - GlobalPosition
# - Battery
# - Destinations
# - Doors
# - Maintainers
# Clones: 1
Coin test agent:
Actions:
- Noop
- Charge
- Collect
- DoorUse
- Move8
Observations:
@@ -52,6 +69,8 @@ Agents:
- Walls
- GlobalPosition
- Battery
- ChargePods
- CoinPiles
- Destinations
- Doors
- Maintainers
@@ -67,11 +86,18 @@ Entities:
Destinations:
coords_or_quantity: 1
spawn_mode: GROUPED
DirtPiles:
# DirtPiles:
# coords_or_quantity: 10
# initial_amount: 2
# clean_amount: 1
# dirt_spawn_r_var: 0.1
# max_global_amount: 20
# max_local_amount: 5
CoinPiles:
coords_or_quantity: 10
initial_amount: 2
clean_amount: 1
dirt_spawn_r_var: 0.1
collect_amount: 1
coin_spawn_r_var: 0.1
max_global_amount: 20
max_local_amount: 5
Doors:
@@ -90,24 +116,26 @@ Entities:
General:
env_seed: 69
individual_rewards: true
level_name: quadrant
level_name: two_rooms
pomdp_r: 3
verbose: false
tests: false
Rules:
# Environment Dynamics
EntitiesSmearDirtOnMove:
smear_ratio: 0.2
# EntitiesSmearDirtOnMove:
# smear_ratio: 0.2
DoorAutoClose:
close_frequency: 10
MoveMaintainers:
# Respawn Stuff
RespawnDirt:
respawn_freq: 15
# RespawnDirt:
# respawn_freq: 15
RespawnItems:
respawn_freq: 15
RespawnCoins:
respawn_freq: 15
# Utilities
WatchCollisions:

View File

@@ -81,7 +81,7 @@ class Factory(gym.Env):
def __init__(self, config_file: Union[str, PathLike], custom_modules_path: Union[None, PathLike] = None,
custom_level_path: Union[None, PathLike] = None):
"""
Initializes the marl-factory-grid as Gym environment.
Initializes the rl-factory-grid as Gym environment.
:param config_file: Path to the configuration file.
:type config_file: Union[str, PathLike]
@@ -271,15 +271,37 @@ class Factory(gym.Env):
if not self._renderer: # lazy init
from marl_factory_grid.utils.renderer import Renderer
global Renderer
self._renderer = Renderer(self.map.level_shape, view_radius=self.conf.pomdp_r, fps=10)
self._renderer = Renderer(self.map.level_shape, view_radius=self.conf.pomdp_r, fps=10)
render_entities = self.state.entities.render()
# Hide entities where certain conditions are met (e.g., amount <= 0 for DirtPiles)
render_entities = self.filter_entities(render_entities)
# Mask entities based on dynamic conditions instead of hardcoding level-specific logic
if self.conf['General']['level_name'] == 'two_rooms':
render_entities = self.mask_entities(render_entities)
if self.conf.pomdp_r:
for render_entity in render_entities:
if render_entity.name == c.AGENT:
render_entity.aux = self.obs_builder.curr_lightmaps[render_entity.real_name]
return self._renderer.render(render_entities, self._recorder)
def filter_entities(self, entities):
""" Generalized method to filter out entities that shouldn't be rendered. """
if 'DirtPiles' in self.state.entities.keys():
entities = [entity for entity in entities if not (entity.name == 'DirtPiles' and entity.amount <= 0)]
return entities
def mask_entities(self, entities):
""" Generalized method to mask entities based on dynamic conditions. """
for entity in entities:
if entity.name == 'CoinPiles':
entity.mask = 'Destinations'
entity.mask_value = 1
return entities
def set_recorder(self, recorder):
self._recorder = recorder
@@ -298,7 +320,7 @@ class Factory(gym.Env):
summary.update({entity_group.name.lower(): entity_group.summarize_states()})
# TODO Section End ########
for key in list(summary.keys()):
if key not in ['step', 'walls', 'doors', 'agents', 'items', 'dirtPiles', 'batteries']:
if key not in ['step', 'walls', 'doors', 'agents', 'items', 'dirtPiles', 'batteries', 'coinPiles']:
del summary[key]
return summary

View File

@@ -168,14 +168,25 @@ class SpawnEntity(Rule):
return results
def _get_position(spawn_rule, positions, empty_positions, positions_pointer):
"""
Internal usage, selects positions based on rule.
"""
if spawn_rule and spawn_rule == "random":
position = random.choice(([x for x in positions if x in empty_positions]))
elif spawn_rule and spawn_rule == "order":
position = ([x for x in positions if x in empty_positions])[positions_pointer]
else:
position = h.get_first([x for x in positions if x in empty_positions])
return position
class SpawnAgents(Rule):
def __init__(self):
"""
TODO
:return:
Finds suitable spawn positions according to the given spawn rule, creates agents with these positions and adds
them to state.agents.
"""
super().__init__()
pass
@@ -183,8 +194,9 @@ class SpawnAgents(Rule):
def on_reset(self, state):
spawn_rule = None
for rule in state.rules.rules:
if isinstance(rule, marl_factory_grid.environment.rules.AgentSpawnRule):
if isinstance(rule, AgentSpawnRule):
spawn_rule = rule.spawn_rule
break
if not hasattr(state, 'agent_spawn_positions'):
state.agent_spawn_positions = []
@@ -200,7 +212,7 @@ class SpawnAgents(Rule):
other = agent_conf['other'].copy()
positions_pointer = agent_conf['pos_pointer']
if position := self._get_position(spawn_rule, positions, empty_positions, positions_pointer):
if position := _get_position(spawn_rule, positions, empty_positions, positions_pointer):
assert state.check_pos_validity(position), 'smth went wrong....'
agents.add_item(Agent(actions, observations, position, str_ident=agent_name, **other))
state.agent_spawn_positions.append(position)
@@ -213,21 +225,13 @@ class SpawnAgents(Rule):
state.agent_spawn_positions.append(chosen_position)
return []
def _get_position(self, spawn_rule, positions, empty_positions, positions_pointer):
if spawn_rule and spawn_rule == "random":
position = random.choice(([x for x in positions if x in empty_positions]))
elif spawn_rule and spawn_rule == "order":
position = ([x for x in positions if x in empty_positions])[positions_pointer]
else:
position = h.get_first([x for x in positions if x in empty_positions])
return position
class AgentSpawnRule(Rule):
def __init__(self, spawn_rule):
self.spawn_rule = spawn_rule
super().__init__()
class DoneAtMaxStepsReached(Rule):
def __init__(self, max_steps: int = 500):

View File

@@ -1,4 +1,5 @@
import ast
import random
from marl_factory_grid.environment import constants as c
from marl_factory_grid.environment.groups.collection import Collection
from marl_factory_grid.modules.clean_up.entitites import DirtPile
@@ -33,7 +34,7 @@ class DirtPiles(Collection):
return sum([dirt.amount for dirt in self])
def __init__(self, *args, max_local_amount=5, clean_amount=1, max_global_amount: int = 20, coords_or_quantity=10,
initial_amount=2, amount_var=0.2, n_var=0.2, **kwargs):
initial_amount=2, amount_var=0.2, n_var=0.2, randomize=False, randomization_seed=0, **kwargs):
"""
A Collection of dirt piles that triggers their spawn.
@@ -67,6 +68,8 @@ class DirtPiles(Collection):
self.max_local_amount = max_local_amount
self.coords_or_quantity = coords_or_quantity
self.initial_amount = initial_amount
self.randomize = randomize
self.randomized_selection = None
def trigger_spawn(self, state, coords_or_quantity=0, amount=0, ignore_blocking=False) -> [Result]:
if ignore_blocking:
@@ -85,7 +88,17 @@ class DirtPiles(Collection):
else:
n_new = [pos for pos in coords_or_quantity]
amounts = [amount if amount else (self.initial_amount ) # removed rng amount
if self.randomize:
if not self.randomized_selection:
n_new_prime = []
for n in n_new:
if random.random() < 0.5:
n_new_prime.append(n)
n_new = n_new_prime
self.randomized_selection = n_new
else:
n_new = self.randomized_selection
amounts = [amount if amount else self.initial_amount # removed rng amount
for _ in range(len(n_new))]
spawn_counter = 0

View File

@@ -0,0 +1,4 @@
from .actions import Collect
from .entitites import CoinPile
from .groups import CoinPiles
from .rules import DoneOnAllCoinsCollected

View File

@@ -0,0 +1,36 @@
from typing import Union
from marl_factory_grid.environment.actions import Action
from marl_factory_grid.utils.results import ActionResult
from marl_factory_grid.modules.coins import constants as d
from marl_factory_grid.environment import constants as c
class Collect(Action):
def __init__(self):
"""
Attempts to reduce coin amount on entity's position. Fails if no coin is found at the at agents' position.
"""
super().__init__(d.COLLECT, d.REWARD_COLLECT_VALID, d.REWARD_COLLECT_FAIL)
def do(self, entity, state) -> Union[None, ActionResult]:
if coin_pile := next((x for x in state.entities.pos_dict[entity.pos] if "coin" in x.name.lower()), None):
new_coin_pile_amount = coin_pile.amount - state[d.COIN].collect_amount
if new_coin_pile_amount <= 0:
state[d.COIN].delete_env_object(coin_pile)
else:
coin_pile.set_new_amount(max(new_coin_pile_amount, c.VALUE_FREE_CELL))
valid = c.VALID
print_str = f'{entity.name} did just collect some coins at {entity.pos}.'
state.print(print_str)
else:
valid = c.NOT_VALID
print_str = f'{entity.name} just tried to collect some coins at {entity.pos}, but failed.'
state.print(print_str)
return self.get_result(valid, entity)

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

View File

@@ -0,0 +1,11 @@
COIN = 'CoinPiles'
COLLECT = 'do_collect_action'
COLLECT_VALID = 'collect_valid'
COLLECT_FAIL = 'collect_fail'
COLLECT_ALL = 'all_collected'
REWARD_COLLECT_VALID: float = 0.5
REWARD_COLLECT_FAIL: float = -0.1
REWARD_COLLECT_ALL: float = 4.5

View File

@@ -0,0 +1,46 @@
from marl_factory_grid.environment.entity.entity import Entity
from marl_factory_grid.utils.utility_classes import RenderEntity
from marl_factory_grid.modules.coins import constants as d
class CoinPile(Entity):
@property
def amount(self):
"""
Internal Usage
"""
return self._amount
@property
def encoding(self):
return self._amount
def __init__(self, *args, amount=2, max_local_amount=5, **kwargs):
"""
Represents a pile of coins at a specific position in the environment that agents can interact with. Agents can
clean the dirt pile or, depending on activated rules, interact with it in different ways.
:param amount: The amount of coins in the pile.
:type amount: float
:param max_local_amount: The maximum amount of dirt allowed in a single pile at one position.
:type max_local_amount: float
"""
super(CoinPile, self).__init__(*args, **kwargs)
self._amount = amount
self.max_local_amount = max_local_amount
def set_new_amount(self, amount):
"""
Internal Usage
"""
self._amount = min(amount, self.max_local_amount)
def summarize_state(self):
state_dict = super().summarize_state()
state_dict.update(amount=float(self.amount))
return state_dict
def render(self):
return RenderEntity(d.COIN, self.pos, min(0.15 + self.amount, 1.5), 'scale')

View File

@@ -0,0 +1,108 @@
import ast
from marl_factory_grid.environment import constants as c
from marl_factory_grid.environment.groups.collection import Collection
from marl_factory_grid.modules.coins.entitites import CoinPile
from marl_factory_grid.utils.results import Result
from marl_factory_grid.utils import helpers as h
class CoinPiles(Collection):
_entity = CoinPile
@property
def var_is_blocking_light(self):
return False
@property
def var_can_collide(self):
return False
@property
def var_can_move(self):
return False
@property
def var_has_position(self):
return True
@property
def global_amount(self) -> float:
"""
Internal Usage
"""
return sum([dirt.amount for dirt in self])
def __init__(self, *args, max_local_amount=5, collect_amount=1, max_global_amount: int = 20, coords_or_quantity=10,
initial_amount=2, amount_var=0.2, n_var=0.2, **kwargs):
"""
A Collection of dirt piles that triggers their spawn.
:param max_local_amount: The maximum amount of coins allowed in a single pile at one position.
:type max_local_amount: int
:param clean_amount: The amount of coins removed by a single collecting action.
:type clean_amount: int
:param max_global_amount: The maximum total amount of coins allowed in the environment.
:type max_global_amount: int
:param coords_or_quantity: Determines whether to use coordinates or quantity when triggering coin pile spawn.
:type coords_or_quantity: Union[Tuple[int, int], int]
:param initial_amount: The initial amount of coin in each newly spawned pile.
:type initial_amount: int
:param amount_var: The variability in the initial amount of coin in each pile.
:type amount_var: float
:param n_var: The variability in the number of new coin piles spawned.
:type n_var: float
"""
super(CoinPiles, self).__init__(*args, **kwargs)
self.amount_var = amount_var
self.n_var = n_var
self.collect_amount = collect_amount
self.max_global_amount = max_global_amount
self.max_local_amount = max_local_amount
self.coords_or_quantity = coords_or_quantity
self.initial_amount = initial_amount
def trigger_spawn(self, state, coords_or_quantity=0, amount=0, ignore_blocking=False) -> [Result]:
if ignore_blocking:
print("##########################################")
print("Blocking should not be ignored for this Entity")
print("Exiting....")
exit()
coords_or_quantity = coords_or_quantity if coords_or_quantity else self.coords_or_quantity
if isinstance(coords_or_quantity, int):
n_new = int(abs(coords_or_quantity + (state.rng.uniform(-self.n_var, self.n_var))))
n_new = state.get_n_random_free_positions(n_new)
else:
coords_or_quantity = ast.literal_eval(coords_or_quantity)
if isinstance(coords_or_quantity[0], int):
n_new = [coords_or_quantity]
else:
n_new = [pos for pos in coords_or_quantity]
amounts = [amount if amount else (self.initial_amount ) # removed rng amount
for _ in range(len(n_new))]
spawn_counter = 0
for idx, (pos, a) in enumerate(zip(n_new, amounts)):
if not self.global_amount > self.max_global_amount:
if coin := self.by_pos(pos):
coin = h.get_first(coin)
new_value = coin.amount + a
coin.set_new_amount(new_value)
else:
super().spawn([pos], amount=a)
spawn_counter += 1
else:
return Result(identifier=f'{self.name}_spawn', validity=c.NOT_VALID, value=spawn_counter)
return Result(identifier=f'{self.name}_spawn', validity=c.VALID, value=spawn_counter)
def __repr__(self):
s = super(CoinPiles, self).__repr__()
return f'{s[:-1]}, {self.global_amount}]'

View File

@@ -0,0 +1,59 @@
from marl_factory_grid.modules.coins import constants as d
from marl_factory_grid.environment import constants as c
from marl_factory_grid.environment.rules import Rule
from marl_factory_grid.utils.helpers import is_move
from marl_factory_grid.utils.results import TickResult
from marl_factory_grid.utils.results import DoneResult
class DoneOnAllCoinsCollected(Rule):
def __init__(self, reward: float = d.REWARD_COLLECT_ALL):
"""
Defines a 'Done'-condition which triggers, when there is no more 'Dirt' in the environment.
:type reward: float
:parameter reward: Given reward when condition triggers.
"""
super().__init__()
self.reward = reward
def on_check_done(self, state) -> [DoneResult]:
if len(state[d.COIN]) == 0 and state.curr_step:
return [DoneResult(validity=c.VALID, identifier=self.name, reward=self.reward)]
return []
class RespawnCoins(Rule):
def __init__(self, respawn_freq: int = 15, respawn_n: int = 5, respawn_amount: float = 1.0):
"""
Defines the spawn pattern of initial and additional 'Dirt'-entities.
First chooses positions, then tries to spawn dirt until 'respawn_n' or the maximal global amount is reached.
If there is already some, it is topped up to min(max_local_amount, amount).
:type respawn_freq: int
:parameter respawn_freq: In which frequency should this Rule try to spawn new 'Dirt'?
:type respawn_n: int
:parameter respawn_n: How many respawn positions are considered.
:type respawn_amount: float
:parameter respawn_amount: Defines how much dirt 'amount' is placed every 'spawn_freq' ticks.
"""
super().__init__()
self.respawn_n = respawn_n
self.respawn_amount = respawn_amount
self.respawn_freq = respawn_freq
self._next_coin_spawn = respawn_freq
def tick_step(self, state):
collection = state[d.COIN]
if self._next_coin_spawn < 0:
result = [] # No CoinPile Spawn
elif not self._next_coin_spawn:
result = [collection.trigger_spawn(state, coords_or_quantity=self.respawn_n, amount=self.respawn_amount)]
self._next_coin_spawn = self.respawn_freq
else:
self._next_coin_spawn -= 1
result = []
return result

View File

@@ -7,7 +7,10 @@ from typing import Union
import numpy as np
import pandas as pd
import torch
from matplotlib import pyplot as plt
from marl_factory_grid.algorithms.rl.utils import _as_torch
from marl_factory_grid.utils.helpers import IGNORED_DF_COLUMNS
from marl_factory_grid.utils.plotting.plotting_utils import prepare_plot
@@ -253,3 +256,125 @@ direction_mapping = {
'south_east': (1, 1),
'south_west': (-1, 1)
}
def plot_reward_development(reward_development, results_path):
smoothed_data = np.convolve(reward_development, np.ones(10) / 10, mode='valid')
plt.plot(smoothed_data)
plt.ylim([-10, max(smoothed_data) + 20])
plt.title('Smoothed Reward Development')
plt.xlabel('Episode')
plt.ylabel('Reward')
plt.savefig(f"{results_path}/smoothed_reward_development.png")
plt.show()
def plot_collected_coins_per_step():
# Observed behaviour for multi-agent setting consisting of run0 and run0
cleaned_dirt_per_step_emergent = [0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5]
cleaned_dirt_per_step = [0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 4, 5] # RL and TSP
plt.step(range(1, len(cleaned_dirt_per_step) + 1), cleaned_dirt_per_step, color='green', linewidth=3, label='Prevented (RL)')
plt.step(range(1, len(cleaned_dirt_per_step_emergent) + 1), cleaned_dirt_per_step_emergent, linestyle='--', color='darkred', linewidth=3, label='Emergent')
plt.step(range(1, len(cleaned_dirt_per_step) + 1), cleaned_dirt_per_step, linestyle='dotted', color='darkorange', linewidth=3, label='Prevented (TSP)')
plt.xlabel("Environment step", fontsize=20)
plt.ylabel("Collected Coins", fontsize=20)
yint = range(min(cleaned_dirt_per_step), max(cleaned_dirt_per_step) + 1)
plt.yticks(yint, fontsize=17)
plt.xticks(range(1, len(cleaned_dirt_per_step_emergent) + 1), fontsize=17)
frame1 = plt.gca()
# Only display every 5th tick label
for idx, xlabel_i in enumerate(frame1.axes.get_xticklabels()):
if (idx + 1) % 5 != 0:
xlabel_i.set_visible(False)
xlabel_i.set_fontsize(0.0)
# Change order of labels in legend
handles, labels = frame1.get_legend_handles_labels()
order = [0, 2, 1]
plt.legend([handles[idx] for idx in order], [labels[idx] for idx in order], prop={'size': 20})
fig = plt.gcf()
fig.set_size_inches(8, 7)
plt.savefig("../study_out/number_of_collected_coins.pdf")
plt.show()
def plot_reached_flags_per_step():
# Observed behaviour for multi-agent setting consisting of runs 1 + 2
reached_flags_per_step_emergent = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
reached_flags_per_step_RL = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2]
reached_flags_per_step_TSP = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]
plt.step(range(1, len(reached_flags_per_step_RL) + 1), reached_flags_per_step_RL, color='green', linewidth=3, label='Prevented (RL)')
plt.step(range(1, len(reached_flags_per_step_emergent) + 1), reached_flags_per_step_emergent, linestyle='--', color='darkred', linewidth=3, label='Emergent')
plt.step(range(1, len(reached_flags_per_step_TSP) + 1), reached_flags_per_step_TSP, linestyle='dotted', color='darkorange', linewidth=3, label='Prevented (TSP)')
plt.xlabel("Environment step", fontsize=20)
plt.ylabel("Reached Flags", fontsize=20)
yint = range(min(reached_flags_per_step_RL), max(reached_flags_per_step_RL) + 1)
plt.yticks(yint, fontsize=17)
plt.xticks(range(1, len(reached_flags_per_step_emergent) + 1), fontsize=17)
frame1 = plt.gca()
# Only display every 5th tick label
for idx, xlabel_i in enumerate(frame1.axes.get_xticklabels()):
if (idx + 1) % 5 != 0:
xlabel_i.set_visible(False)
xlabel_i.set_fontsize(0.0)
# Change order of labels in legend
handles, labels = frame1.get_legend_handles_labels()
order = [0, 2, 1]
plt.legend([handles[idx] for idx in order], [labels[idx] for idx in order], prop={'size': 20})
fig = plt.gcf()
fig.set_size_inches(8, 7)
plt.savefig("../study_out/number_of_reached_flags.pdf")
plt.show()
def create_info_maps(env, all_valid_observations, dirt_piles_positions, results_path, agents, act_dim,
a2c_instance):
# Create value map
with open(f"{results_path}/info_maps.txt", "w") as txt_file:
for obs_layer, pos in enumerate(dirt_piles_positions):
observations_shape = (
max(t[0] for t in env.state.entities.floorlist) + 2,
max(t[1] for t in env.state.entities.floorlist) + 2)
value_maps = [np.zeros(observations_shape) for _ in agents]
likeliest_action = [np.full(observations_shape, np.NaN) for _ in agents]
action_probabilities = [np.zeros((observations_shape[0], observations_shape[1], act_dim)) for
_ in agents]
for obs in all_valid_observations[obs_layer]:
for idx, agent in enumerate(agents):
x, y = int(obs[0]), int(obs[1])
try:
value_maps[idx][x][y] = agent.vf(obs)
probs = agent.pi.distribution(obs).probs
likeliest_action[idx][x][y] = torch.argmax(
probs) # get the likeliest action at the current agent position
action_probabilities[idx][x][y] = probs
except:
pass
txt_file.write("=======Value Maps=======\n")
for agent_idx, vmap in enumerate(value_maps):
txt_file.write(f"Value map of agent {agent_idx} for target pile {pos}:\n")
vmap = _as_torch(vmap).round(decimals=4)
max_digits = max(len(str(vmap.max().item())), len(str(vmap.min().item())))
for idx, row in enumerate(vmap):
txt_file.write(' '.join(f" {elem:>{max_digits + 1}}" for elem in row.tolist()))
txt_file.write("\n")
txt_file.write("\n")
txt_file.write("=======Likeliest Action=======\n")
for agent_idx, amap in enumerate(likeliest_action):
txt_file.write(f"Likeliest action map of agent {agent_idx} for target pile {pos}:\n")
txt_file.write(np.array2string(amap))
txt_file.write("\n")
txt_file.write("=======Action Probabilities=======\n")
for agent_idx, pmap in enumerate(action_probabilities):
a2c_instance.action_probabilities[agent_idx].append(pmap)
txt_file.write(f"Action probability map of agent {agent_idx} for target pile {pos}:\n")
for d in range(pmap.shape[0]):
row = '['
for r in range(pmap.shape[1]):
row += "[" + ', '.join(f"{x:7.4f}" for x in pmap[d, r]) + "]"
txt_file.write(row + "]")
txt_file.write("\n")
return action_probabilities

View File

@@ -348,7 +348,6 @@ class Renderer:
self.save_counter += 1
full_path = os.path.join(out_dir, unique_filename)
pygame.image.save(self.screen, full_path)
print(f"Image saved as {unique_filename}")
if __name__ == '__main__':

View File

@@ -118,9 +118,8 @@ class Gamestate(object):
self._floortile_graph = None
self.tests = StepTests(*tests)
# Pointer that defines current spawn points of agents
for agent in self.agents_conf:
self.agents_conf[agent]["pos_pointer"] = 0
# Initialize position pointers for agents
self._initialize_position_pointers()
def reset(self):
self.curr_step = 0
@@ -138,6 +137,11 @@ class Gamestate(object):
def __repr__(self):
return f'{self.__class__.__name__}({len(self.entities)} Entitites @ Step {self.curr_step})'
def _initialize_position_pointers(self):
""" Initialize the position pointers for each agent in the configuration."""
for agent in self.agents_conf:
self.agents_conf[agent]["pos_pointer"] = 0
@property
def random_free_position(self) -> (int, int):
"""