added individual eps-greedy for VDN

This commit is contained in:
romue 2021-06-25 15:42:55 +02:00
parent 42f0dde056
commit 456e48f2e0
4 changed files with 85 additions and 2 deletions

View File

@ -71,6 +71,7 @@ def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity')
return nn.Sequential(OrderedDict(layers)) return nn.Sequential(OrderedDict(layers))
class BaseDQN(nn.Module): class BaseDQN(nn.Module):
def __init__(self, dims=[3*5*5, 64, 64, 9]): def __init__(self, dims=[3*5*5, 64, 64, 9]):
super(BaseDQN, self).__init__() super(BaseDQN, self).__init__()
@ -100,3 +101,20 @@ class BaseDDQN(BaseDQN):
advantages = self.advantage_head(features) advantages = self.advantage_head(features)
values = self.value_head(features) values = self.value_head(features)
return values + (advantages - advantages.mean()) return values + (advantages - advantages.mean())
class QTRANtestNet(nn.Module):
def __init__(self, backbone_dims=[3*5*5, 64, 64], q_head=[64, 9]):
super(QTRANtestNet, self).__init__()
self.backbone = mlp_maker(backbone_dims, flatten=True, activation_last='elu')
self.q_head = mlp_maker(q_head)
def forward(self, x):
features = self.backbone(x)
qs = self.q_head(features)
return qs, features
@torch.no_grad()
def act(self, x) -> np.ndarray:
action = self.forward(x)[0].max(-1)[1].numpy()
return action

View File

@ -128,7 +128,7 @@ if __name__ == '__main__':
from algorithms.common import BaseDDQN from algorithms.common import BaseDDQN
from algorithms.vdn_learner import VDNLearner from algorithms.vdn_learner import VDNLearner
N_AGENTS = 1 N_AGENTS = 2
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30, dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05) max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
@ -138,7 +138,7 @@ if __name__ == '__main__':
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True) env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
dqn, target_dqn = BaseDDQN(), BaseDDQN() dqn, target_dqn = BaseDDQN(), BaseDDQN()
learner = QLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, learner = VDNLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64) train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
#learner.save(Path(__file__).parent / 'test' / 'testexperiment1337') #learner.save(Path(__file__).parent / 'test' / 'testexperiment1337')
learner.learn(100000) learner.learn(100000)

View File

@ -0,0 +1,48 @@
import torch
from algorithms.q_learner import QLearner
class QTRANLearner(QLearner):
def __init__(self, *args, weight_opt=1., weigt_nopt=1., **kwargs):
super(QTRANLearner, self).__init__(*args, **kwargs)
assert self.n_agents >= 2, 'QTRANLearner requires more than one agent, use QLearner instead'
self.weight_opt = weight_opt
self.weigt_nopt = weigt_nopt
def _training_routine(self, obs, next_obs, action):
# todo remove - is inherited - only used while implementing qtran
current_q_values = self.q_net(obs)
current_q_values = torch.gather(current_q_values, dim=-1, index=action)
next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach()
return current_q_values, next_q_values_raw
def local_qs(self, observations, actions):
Q_jt = torch.zeros_like(actions) # placeholder to sum up individual q values
features = []
for agent_i in range(self.n_agents):
q_values_agent_i, features_agent_i = self.q_net(observations[:, agent_i]) # Individual action-value network
q_values_agent_i = torch.gather(q_values_agent_i, dim=-1, index=actions[:, agent_i].unsqueeze(-1))
Q_jt += q_values_agent_i
features.append(features_agent_i)
feature_sum = torch.stack(features, 0).sum(0) # (n_agents x hdim) -> hdim
return Q_jt
def train(self):
if len(self.buffer) < self.batch_size: return
for _ in range(self.n_grad_steps):
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
Q_jt_prime = self.local_qs(experience.observation, experience.action) # sum of individual q-vals
Q_jt = None
V_jt = None
pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1))
for agent_i in range(self.n_agents):
q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i],
experience.next_observation[:, agent_i],
experience.action[:, agent_i].unsqueeze(-1))
pred_q += q_values
target_q_raw += next_q_values_raw
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
self._backprop_loss(loss)

View File

@ -1,4 +1,6 @@
from typing import Union
import torch import torch
import numpy as np
from algorithms.q_learner import QLearner from algorithms.q_learner import QLearner
@ -7,6 +9,21 @@ class VDNLearner(QLearner):
super(VDNLearner, self).__init__(*args, **kwargs) super(VDNLearner, self).__init__(*args, **kwargs)
assert self.n_agents >= 2, 'VDN requires more than one agent, use QLearner instead' assert self.n_agents >= 2, 'VDN requires more than one agent, use QLearner instead'
def get_action(self, obs) -> Union[int, np.ndarray]:
o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs)
eps = np.random.rand(self.n_agents)
greedy = eps > self.eps
agent_actions = None
actions = []
for i in range(self.n_agents):
if greedy[i]:
if agent_actions is None: agent_actions = self.q_net.act(o.float())
action = agent_actions[i]
else:
action = self.env.action_space.sample()
actions.append(action)
return np.array(actions)
def train(self): def train(self):
if len(self.buffer) < self.batch_size: return if len(self.buffer) < self.batch_size: return
for _ in range(self.n_grad_steps): for _ in range(self.n_grad_steps):