mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-23 15:26:43 +02:00
added individual eps-greedy for VDN
This commit is contained in:
parent
42f0dde056
commit
456e48f2e0
@ -71,6 +71,7 @@ def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity')
|
|||||||
return nn.Sequential(OrderedDict(layers))
|
return nn.Sequential(OrderedDict(layers))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class BaseDQN(nn.Module):
|
class BaseDQN(nn.Module):
|
||||||
def __init__(self, dims=[3*5*5, 64, 64, 9]):
|
def __init__(self, dims=[3*5*5, 64, 64, 9]):
|
||||||
super(BaseDQN, self).__init__()
|
super(BaseDQN, self).__init__()
|
||||||
@ -100,3 +101,20 @@ class BaseDDQN(BaseDQN):
|
|||||||
advantages = self.advantage_head(features)
|
advantages = self.advantage_head(features)
|
||||||
values = self.value_head(features)
|
values = self.value_head(features)
|
||||||
return values + (advantages - advantages.mean())
|
return values + (advantages - advantages.mean())
|
||||||
|
|
||||||
|
|
||||||
|
class QTRANtestNet(nn.Module):
|
||||||
|
def __init__(self, backbone_dims=[3*5*5, 64, 64], q_head=[64, 9]):
|
||||||
|
super(QTRANtestNet, self).__init__()
|
||||||
|
self.backbone = mlp_maker(backbone_dims, flatten=True, activation_last='elu')
|
||||||
|
self.q_head = mlp_maker(q_head)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
features = self.backbone(x)
|
||||||
|
qs = self.q_head(features)
|
||||||
|
return qs, features
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def act(self, x) -> np.ndarray:
|
||||||
|
action = self.forward(x)[0].max(-1)[1].numpy()
|
||||||
|
return action
|
@ -128,7 +128,7 @@ if __name__ == '__main__':
|
|||||||
from algorithms.common import BaseDDQN
|
from algorithms.common import BaseDDQN
|
||||||
from algorithms.vdn_learner import VDNLearner
|
from algorithms.vdn_learner import VDNLearner
|
||||||
|
|
||||||
N_AGENTS = 1
|
N_AGENTS = 2
|
||||||
|
|
||||||
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
|
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
|
||||||
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
|
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
|
||||||
@ -138,7 +138,7 @@ if __name__ == '__main__':
|
|||||||
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
|
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
|
||||||
|
|
||||||
dqn, target_dqn = BaseDDQN(), BaseDDQN()
|
dqn, target_dqn = BaseDDQN(), BaseDDQN()
|
||||||
learner = QLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
|
learner = VDNLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
|
||||||
train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
|
train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
|
||||||
#learner.save(Path(__file__).parent / 'test' / 'testexperiment1337')
|
#learner.save(Path(__file__).parent / 'test' / 'testexperiment1337')
|
||||||
learner.learn(100000)
|
learner.learn(100000)
|
||||||
|
48
algorithms/qtran_learner.py
Normal file
48
algorithms/qtran_learner.py
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
import torch
|
||||||
|
from algorithms.q_learner import QLearner
|
||||||
|
|
||||||
|
|
||||||
|
class QTRANLearner(QLearner):
|
||||||
|
def __init__(self, *args, weight_opt=1., weigt_nopt=1., **kwargs):
|
||||||
|
super(QTRANLearner, self).__init__(*args, **kwargs)
|
||||||
|
assert self.n_agents >= 2, 'QTRANLearner requires more than one agent, use QLearner instead'
|
||||||
|
self.weight_opt = weight_opt
|
||||||
|
self.weigt_nopt = weigt_nopt
|
||||||
|
|
||||||
|
def _training_routine(self, obs, next_obs, action):
|
||||||
|
# todo remove - is inherited - only used while implementing qtran
|
||||||
|
current_q_values = self.q_net(obs)
|
||||||
|
current_q_values = torch.gather(current_q_values, dim=-1, index=action)
|
||||||
|
next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach()
|
||||||
|
return current_q_values, next_q_values_raw
|
||||||
|
|
||||||
|
def local_qs(self, observations, actions):
|
||||||
|
Q_jt = torch.zeros_like(actions) # placeholder to sum up individual q values
|
||||||
|
features = []
|
||||||
|
for agent_i in range(self.n_agents):
|
||||||
|
q_values_agent_i, features_agent_i = self.q_net(observations[:, agent_i]) # Individual action-value network
|
||||||
|
q_values_agent_i = torch.gather(q_values_agent_i, dim=-1, index=actions[:, agent_i].unsqueeze(-1))
|
||||||
|
Q_jt += q_values_agent_i
|
||||||
|
features.append(features_agent_i)
|
||||||
|
feature_sum = torch.stack(features, 0).sum(0) # (n_agents x hdim) -> hdim
|
||||||
|
return Q_jt
|
||||||
|
|
||||||
|
def train(self):
|
||||||
|
if len(self.buffer) < self.batch_size: return
|
||||||
|
for _ in range(self.n_grad_steps):
|
||||||
|
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
|
||||||
|
|
||||||
|
Q_jt_prime = self.local_qs(experience.observation, experience.action) # sum of individual q-vals
|
||||||
|
Q_jt = None
|
||||||
|
V_jt = None
|
||||||
|
|
||||||
|
pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1))
|
||||||
|
for agent_i in range(self.n_agents):
|
||||||
|
q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i],
|
||||||
|
experience.next_observation[:, agent_i],
|
||||||
|
experience.action[:, agent_i].unsqueeze(-1))
|
||||||
|
pred_q += q_values
|
||||||
|
target_q_raw += next_q_values_raw
|
||||||
|
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
|
||||||
|
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
|
||||||
|
self._backprop_loss(loss)
|
@ -1,4 +1,6 @@
|
|||||||
|
from typing import Union
|
||||||
import torch
|
import torch
|
||||||
|
import numpy as np
|
||||||
from algorithms.q_learner import QLearner
|
from algorithms.q_learner import QLearner
|
||||||
|
|
||||||
|
|
||||||
@ -7,6 +9,21 @@ class VDNLearner(QLearner):
|
|||||||
super(VDNLearner, self).__init__(*args, **kwargs)
|
super(VDNLearner, self).__init__(*args, **kwargs)
|
||||||
assert self.n_agents >= 2, 'VDN requires more than one agent, use QLearner instead'
|
assert self.n_agents >= 2, 'VDN requires more than one agent, use QLearner instead'
|
||||||
|
|
||||||
|
def get_action(self, obs) -> Union[int, np.ndarray]:
|
||||||
|
o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs)
|
||||||
|
eps = np.random.rand(self.n_agents)
|
||||||
|
greedy = eps > self.eps
|
||||||
|
agent_actions = None
|
||||||
|
actions = []
|
||||||
|
for i in range(self.n_agents):
|
||||||
|
if greedy[i]:
|
||||||
|
if agent_actions is None: agent_actions = self.q_net.act(o.float())
|
||||||
|
action = agent_actions[i]
|
||||||
|
else:
|
||||||
|
action = self.env.action_space.sample()
|
||||||
|
actions.append(action)
|
||||||
|
return np.array(actions)
|
||||||
|
|
||||||
def train(self):
|
def train(self):
|
||||||
if len(self.buffer) < self.batch_size: return
|
if len(self.buffer) < self.batch_size: return
|
||||||
for _ in range(self.n_grad_steps):
|
for _ in range(self.n_grad_steps):
|
||||||
|
Loading…
x
Reference in New Issue
Block a user