added own dqn

This commit is contained in:
romue 2021-06-17 16:15:08 +02:00
parent 26d7705e19
commit 443217a3f6

View File

@ -1,4 +1,4 @@
from typing import Tuple, NamedTuple
from typing import NamedTuple, Union
from collections import namedtuple, deque
import numpy as np
import random
@ -6,16 +6,17 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
from stable_baselines3.common.utils import polyak_update
from stable_baselines3.common.buffers import ReplayBuffer
import copy
class Experience(NamedTuple):
observation: np.ndarray
observation: np.ndarray
next_observation: np.ndarray
action: int
reward: float
done : bool
priority: float = 1
info : dict = {}
action: np.ndarray
reward: Union[float, np.ndarray]
done : Union[bool, np.ndarray]
priority: np.ndarray = 1
class BaseBuffer:
@ -31,7 +32,12 @@ class BaseBuffer:
def sample(self, k):
sample = random.choices(self.experience, k=k)
return sample
observations = torch.stack([torch.from_numpy(e.observation) for e in sample], 0).float()
next_observations = torch.stack([torch.from_numpy(e.next_observation) for e in sample], 0).float()
actions = torch.tensor([e.action for e in sample]).long()
rewards = torch.tensor([e.reward for e in sample]).float().view(-1, 1)
dones = torch.tensor([e.done for e in sample]).float().view(-1, 1)
return Experience(observations, next_observations, actions, rewards, dones)
class PERBuffer(BaseBuffer):
@ -50,16 +56,16 @@ class BaseDQN(nn.Module):
def __init__(self):
super(BaseDQN, self).__init__()
self.net = nn.Sequential(
nn.Linear(3*5*5, 64),
nn.Linear(3*5*5, 128),
nn.ReLU(),
nn.Linear(64, 64),
nn.Linear(128, 128),
nn.ReLU(),
nn.Linear(64, 9)
nn.Linear(128, 9)
)
def act(self, x):
def act(self, x) -> np.ndarray:
with torch.no_grad():
action = self.net(x.view(x.shape[0], -1)).argmax(-1).item()
action = self.net(x.view(x.shape[0], -1)).max(-1)[1].numpy()
return action
def forward(self, x):
@ -70,17 +76,17 @@ class BaseDQN(nn.Module):
class BaseQlearner:
def __init__(self, q_net, target_q_net, env, buffer, target_update, warmup, eps_end,
def __init__(self, q_net, target_q_net, env, buffer, target_update, eps_end, n_agents=1,
gamma=0.99, train_every_n_steps=4, n_grad_steps=1,
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0):
self.q_net = q_net
self.target_q_net = target_q_net
self.target_q_net.load_state_dict(self.q_net.state_dict())
#self.q_net.apply(self.weights_init)
polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1)
self.target_q_net.eval()
self.env = env
self.buffer = buffer
self.target_update = target_update
self.warmup = warmup
self.eps = 1.
self.eps_end = eps_end
self.exploration_fraction = exploration_fraction
@ -90,73 +96,97 @@ class BaseQlearner:
self.n_grad_steps = n_grad_steps
self.lr = lr
self.reg_weight = reg_weight
self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=self.lr)
self.n_agents = n_agents
self.device = 'cpu'
self.running_reward = deque(maxlen=10)
self.running_loss = deque(maxlen=10)
self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=self.lr)
self.running_reward = deque(maxlen=30)
self.running_loss = deque(maxlen=30)
def to(self, device):
self.device = device
return self
@staticmethod
def weights_init(module, activation='relu'):
if isinstance(module, (nn.Linear, nn.Conv2d)):
nn.init.xavier_normal_(module.weight, gain=torch.nn.init.calculate_gain(activation))
if module.bias is not None:
module.bias.data.fill_(0.0)
def anneal_eps(self, step, n_steps):
fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0)
eps = 1 + fraction * (self.eps_end - 1)
return eps
self.eps = 1 + fraction * (self.eps_end - 1)
def get_action(self, obs) -> Union[int, np.ndarray]:
o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs)
if np.random.rand() > self.eps:
action = self.q_net.act(o.float())
else:
action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)])
return action
def learn(self, n_steps):
step, eps = 0, 1
step = 0
while step < n_steps:
obs, done = self.env.reset(), False
total_reward = 0
while not done:
action = self.q_net.act(torch.from_numpy(obs).unsqueeze(0).float()) \
if np.random.rand() > eps else env.action_space.sample()
action = self.get_action(obs)
next_obs, reward, done, info = env.step(action)
next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0])
experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done) # do we really need to copy?
experience = Experience(observation=obs.copy(), next_observation=next_obs.copy(),
action=action, reward=reward, done=done) # do we really need to copy?
self.buffer.add(experience)
# end of step routine
obs = next_obs
step += 1
total_reward += reward
eps = self.anneal_eps(step, n_steps)
self.anneal_eps(step, n_steps)
if step % self.train_every_n_steps == 0:
self.train()
if step % self.target_update == 0:
self.target_q_net.load_state_dict(self.q_net.state_dict())
print('UPDATE')
polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1.0)
self.running_reward.append(total_reward)
if step % 10 == 0:
print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward)}\t'
f' eps: {eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss)}')
print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t'
f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}')
def _training_routine(self, obs, next_obs, action):
current_q_values = self.q_net(obs)
current_q_values = torch.gather(current_q_values, dim=1, index=action)
next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach()
return current_q_values, next_q_values_raw
def train(self):
if len(self.buffer) < self.batch_size: return
for _ in range(self.n_grad_steps):
experience = self.buffer.sample(self.batch_size)
#print(experience.observation.shape, experience.next_observation.shape, experience.action.shape, experience.reward.shape, experience.done.shape)
if self.n_agents <= 1:
pred_q, target_q_raw = self._training_routine(experience.observation, experience.next_observation, experience.action)
else:
pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1))
for agent_i in range(self.n_agents):
q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i],
experience.next_observation[:, agent_i],
experience.action[:, agent_i].unsqueeze(-1)
)
pred_q += q_values
target_q_raw += next_q_values_raw
obs = torch.stack([torch.from_numpy(e.observation) for e in experience], 0).float()
next_obs = torch.stack([torch.from_numpy(e.next_observation) for e in experience], 0).float()
actions = torch.tensor([e.action for e in experience]).long()
rewards = torch.tensor([e.reward for e in experience]).float()
dones = torch.tensor([e.done for e in experience]).float()
next_q_values = self.target_q_net(next_obs).detach().max(-1)[0]
target_q_values = rewards + (1. - dones) * self.gamma * next_q_values
q_values = self.q_net(obs).gather(-1, actions.unsqueeze(0))
delta = q_values - target_q_values
loss = torch.mean(self.reg_weight * q_values + torch.pow(delta, 2))
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
print(target_q)
# log loss
self.running_loss.append(loss.item())
# Optimize the model
self.optimizer.zero_grad()
loss.backward()
@ -164,25 +194,33 @@ class BaseQlearner:
self.optimizer.step()
if __name__ == '__main__':
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
from algorithms.reg_dqn import RegDQN
from stable_baselines3.common.vec_env import DummyVecEnv
N_AGENTS = 1
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
move_props = MovementProperties(allow_diagonal_movement=True,
allow_square_movement=True,
allow_no_op=False)
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=1, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False)
#print(env.action_space)
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False)
env = DummyVecEnv([lambda: env])
print(env)
from stable_baselines3.dqn import DQN
#dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 50000, learning_starts = 25000, batch_size = 64, target_update_interval = 5000, exploration_fraction = 0.25, exploration_final_eps = 0.025)
#print(dqn.policy)
#dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 50000, learning_starts = 64, batch_size = 64,
# target_update_interval = 5000, exploration_fraction = 0.25, exploration_final_eps = 0.025,
# train_freq=4, gradient_steps=1, reg_weight=0.05)
#dqn.learn(100000)
print(env.observation_space, env.action_space)
dqn, target_dqn = BaseDQN(), BaseDQN()
learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(50000), target_update=5000, warmup=25000, lr=1e-4, gamma=0.99,
train_every_n_steps=4, eps_end=0.05, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(50000), target_update=10000, lr=0.0001, gamma=0.99, n_agents=N_AGENTS,
train_every_n_steps=4, eps_end=0.05, n_grad_steps=1, reg_weight=0.05, exploration_fraction=0.25, batch_size=64)
learner.learn(100000)