monitor now returning info objects

This commit is contained in:
steffen-illium 2021-05-31 13:58:24 +02:00
parent 7b4e60b0aa
commit 403d38dc24
7 changed files with 61 additions and 59 deletions

View File

@ -189,6 +189,10 @@ class BaseFactory(gym.Env):
if self.steps >= self.max_steps:
done = True
self.monitor.set('step_reward', reward)
self.monitor.set('step', self.steps)
if done:
info.update(monitor=self.monitor)
return self.state, reward, done, info
def _is_moving_action(self, action):

View File

@ -145,28 +145,27 @@ class SimpleFactory(BaseFactory):
self.print(f'Agent {agent_state.i} did just clean up some dirt at {agent_state.pos}.')
self.monitor.set('dirt_cleaned', 1)
else:
reward -= 1
reward -= 0.5
self.print(f'Agent {agent_state.i} just tried to clean up some dirt '
f'at {agent_state.pos}, but was unsucsessfull.')
self.monitor.set('failed_cleanup_attempt', 1)
elif self._is_moving_action(agent_state.action):
if agent_state.action_valid:
reward -= 0.01
reward -= 0.00
else:
reward -= 0.5
else:
self.monitor.set('no_op', 1)
reward -= 0.25
reward -= 0.1
for entity in cols:
if entity != self.state_slices.by_name("dirt"):
self.monitor.set(f'agent_{agent_state.i}_vs_{self.state_slices[entity]}', 1)
self.monitor.set('dirt_amount', current_dirt_amount)
self.monitor.set('dirty_tiles', dirty_tiles)
self.monitor.set('step', self.steps)
self.monitor.set('dirty_tile_count', dirty_tiles)
self.print(f"reward is {reward}")
# Potential based rewards ->
# track the last reward , minus the current reward = potential

View File

@ -8,6 +8,8 @@ LEVEL_IDX = 0
AGENT_START_IDX = 1
IS_FREE_CELL = 0
IS_OCCUPIED_CELL = 1
TO_BE_AVERAGED = ['dirt_amount', 'dirty_tiles']
IGNORED_DF_COLUMNS = ['Episode', 'Run', 'train_step', 'step', 'index']
# Utility functions

View File

@ -4,7 +4,9 @@ from collections import defaultdict
from stable_baselines3.common.callbacks import BaseCallback
from environments.helpers import IGNORED_DF_COLUMNS
from environments.logging.plotting import prepare_plot
import pandas as pd
class FactoryMonitor:
@ -59,16 +61,12 @@ class MonitorCallback(BaseCallback):
def __init__(self, env, filepath=Path('debug_out/monitor.pick'), plotting=True):
super(MonitorCallback, self).__init__()
self.filepath = Path(filepath)
self._monitor_list = list()
self._monitor_df = pd.DataFrame()
self.env = env
self.plotting = plotting
self.started = False
self.closed = False
@property
def monitor_as_df_list(self):
return [x.to_pd_dataframe() for x in self._monitor_list]
def __enter__(self):
self._on_training_start()
@ -89,11 +87,10 @@ class MonitorCallback(BaseCallback):
else:
# self.out_file.unlink(missing_ok=True)
with self.filepath.open('wb') as f:
pickle.dump(self.monitor_as_df_list, f, protocol=pickle.HIGHEST_PROTOCOL)
pickle.dump(self._monitor_df.reset_index(), f, protocol=pickle.HIGHEST_PROTOCOL)
if self.plotting:
print('Monitor files were dumped to disk, now plotting....')
# %% Imports
import pandas as pd
# %% Load MonitorList from Disk
with self.filepath.open('rb') as f:
monitor_list = pickle.load(f)
@ -111,14 +108,21 @@ class MonitorCallback(BaseCallback):
if column != 'episode':
df[f'{column}_roll'] = df[column].rolling(window=50).mean()
# result.tail()
prepare_plot(filepath=self.filepath, results_df=df.filter(regex=(".+_roll")), tag='monitor')
prepare_plot(filepath=self.filepath, results_df=df.filter(regex=(".+_roll")))
print('Plotting done.')
self.closed = True
def _on_step(self) -> bool:
if self.locals['dones'].item():
self._monitor_list.append(self.env.monitor)
else:
pass
for env_idx, done in enumerate(self.locals.get('dones', [])):
if done:
env_monitor_df = self.locals['infos'][env_idx]['monitor'].to_pd_dataframe()
columns = [col for col in env_monitor_df.columns if col not in IGNORED_DF_COLUMNS]
env_monitor_df = env_monitor_df.aggregate(
{col: 'mean' if 'amount' in col or 'count' in col else 'sum' for col in columns}
)
env_monitor_df['episode'] = len(self._monitor_df)
self._monitor_df = self._monitor_df.append([env_monitor_df])
else:
pass
return True

View File

@ -29,7 +29,7 @@ def plot(filepath, ext='png', **kwargs):
figure.savefig(str(filepath), format=ext)
def prepare_plot(filepath, results_df, ext='png', tag=''):
def prepare_plot(filepath, results_df, ext='png'):
_ = sns.lineplot(data=results_df, x='Episode', y='Score', hue='Measurement', ci='sd')
@ -50,8 +50,7 @@ def prepare_plot(filepath, results_df, ext='png', tag=''):
}
try:
plot(filepath, ext=ext, tag=tag, **tex_fonts)
plot(filepath, ext=ext, **tex_fonts)
except (FileNotFoundError, RuntimeError):
tex_fonts['text.usetex'] = False
plot(filepath, ext=ext, tag=tag, **tex_fonts)
plt.show()
plot(filepath, ext=ext, **tex_fonts)

View File

@ -32,7 +32,7 @@ class TraningMonitor(BaseCallback):
df.to_csv(self.filepath, mode='a', header=False)
def _on_step(self) -> bool:
for idx, done in np.ndenumerate(self.locals['dones']):
for idx, done in np.ndenumerate(self.locals.get('dones', [])):
idx = idx[0]
# self.values[self.num_timesteps].update(**{f'reward_env_{idx}': self.locals['rewards'][idx]})
self.rewards[idx] += self.locals['rewards'][idx]

66
main.py
View File

@ -9,6 +9,7 @@ import pandas as pd
from stable_baselines3.common.callbacks import CallbackList
from environments.factory.simple_factory import DirtProperties, SimpleFactory
from environments.helpers import IGNORED_DF_COLUMNS
from environments.logging.monitor import MonitorCallback
from environments.logging.plotting import prepare_plot
from environments.logging.training import TraningMonitor
@ -22,16 +23,11 @@ def combine_runs(run_path: Union[str, PathLike]):
df_list = list()
for run, monitor_file in enumerate(run_path.rglob('monitor_*.pick')):
with monitor_file.open('rb') as f:
monitor_list = pickle.load(f)
monitor_df = pickle.load(f)
for m_idx in range(len(monitor_list)):
monitor_list[m_idx]['episode'] = m_idx
monitor_list[m_idx]['run'] = run
monitor_df['run'] = run
df = pd.concat(monitor_list, ignore_index=True)
df['train_step'] = range(df.shape[0])
df = df.fillna(0)
monitor_df = monitor_df.fillna(0)
#for column in list(df.columns):
# if column not in ['episode', 'run', 'step', 'train_step']:
@ -40,20 +36,16 @@ def combine_runs(run_path: Union[str, PathLike]):
# else:
# df[f'{column}_mean_roll'] = df[column].rolling(window=50, min_periods=1).mean()
df_list.append(df)
df_list.append(monitor_df)
df = pd.concat(df_list, ignore_index=True)
df = df.fillna(0).rename(columns={'episode': 'Episode', 'run': 'Run'})
columns = [col for col in df.columns if col not in ['Episode', 'Run', 'train_step', 'step']]
columns = [col for col in df.columns if col not in IGNORED_DF_COLUMNS]
df_group = df.groupby(['Episode', 'Run']).aggregate(
{col: 'mean' if col in ['dirt_amount', 'dirty_tiles'] else 'sum' for col in columns}
)
non_overlapp_window = df.groupby(['Run', df['Episode'] // 20]).mean()
non_overlapp_window = df_group.groupby(['Run', (df_group.index.get_level_values('Episode') // 20)]).mean()
df_melted = non_overlapp_window.reset_index().melt(id_vars=['Episode', 'Run'],
value_vars=columns, var_name="Measurement",
value_name="Score")
df_melted = non_overlapp_window[columns].reset_index().melt(id_vars=['Episode', 'Run'],
value_vars=columns, var_name="Measurement",
value_name="Score")
prepare_plot(run_path / f'{run_path.name}_monitor_lineplot.png', df_melted)
print('Plotting done.')
@ -61,36 +53,38 @@ def combine_runs(run_path: Union[str, PathLike]):
if __name__ == '__main__':
# combine_runs('debug_out/PPO_1622120377')
# combine_runs('debug_out/PPO_1622399010')
# exit()
from stable_baselines3 import PPO # DQN
from stable_baselines3 import PPO, DQN
dirt_props = DirtProperties()
time_stamp = int(time.time())
out_path = None
for seed in range(5):
for modeL_type in [PPO]:
for seed in range(5):
env = SimpleFactory(n_agents=1, dirt_properties=dirt_props, allow_diagonal_movement=True, allow_no_op=False)
env = SimpleFactory(n_agents=1, dirt_properties=dirt_props,
allow_diagonal_movement=False, allow_no_op=False)
model = PPO("MlpPolicy", env, verbose=1, ent_coef=0.0, seed=seed, device='cpu')
model = modeL_type("MlpPolicy", env, verbose=1, seed=seed, device='cpu')
out_path = Path('debug_out') / f'{model.__class__.__name__}_{time_stamp}'
out_path = Path('debug_out') / f'{model.__class__.__name__}_{time_stamp}'
identifier = f'{seed}_{model.__class__.__name__}_{time_stamp}'
out_path /= identifier
identifier = f'{seed}_{model.__class__.__name__}_{time_stamp}'
out_path /= identifier
callbacks = CallbackList(
[TraningMonitor(out_path / f'train_logging_{identifier}.csv'),
MonitorCallback(env, filepath=out_path / f'monitor_{identifier}.pick', plotting=False)]
)
callbacks = CallbackList(
[TraningMonitor(out_path / f'train_logging_{identifier}.csv'),
MonitorCallback(env, filepath=out_path / f'monitor_{identifier}.pick', plotting=False)]
)
model.learn(total_timesteps=int(2e6), callback=callbacks)
model.learn(total_timesteps=int(5e5), callback=callbacks)
save_path = out_path / f'model_{identifier}.zip'
save_path.parent.mkdir(parents=True, exist_ok=True)
model.save(save_path)
save_path = out_path / f'model_{identifier}.zip'
save_path.parent.mkdir(parents=True, exist_ok=True)
model.save(save_path)
if out_path:
combine_runs(out_path)
if out_path:
combine_runs(out_path.parent)