monitor now returning info objects

This commit is contained in:
steffen-illium
2021-05-31 13:58:24 +02:00
parent 7b4e60b0aa
commit 403d38dc24
7 changed files with 61 additions and 59 deletions

View File

@@ -189,6 +189,10 @@ class BaseFactory(gym.Env):
if self.steps >= self.max_steps:
done = True
self.monitor.set('step_reward', reward)
self.monitor.set('step', self.steps)
if done:
info.update(monitor=self.monitor)
return self.state, reward, done, info
def _is_moving_action(self, action):

View File

@@ -145,28 +145,27 @@ class SimpleFactory(BaseFactory):
self.print(f'Agent {agent_state.i} did just clean up some dirt at {agent_state.pos}.')
self.monitor.set('dirt_cleaned', 1)
else:
reward -= 1
reward -= 0.5
self.print(f'Agent {agent_state.i} just tried to clean up some dirt '
f'at {agent_state.pos}, but was unsucsessfull.')
self.monitor.set('failed_cleanup_attempt', 1)
elif self._is_moving_action(agent_state.action):
if agent_state.action_valid:
reward -= 0.01
reward -= 0.00
else:
reward -= 0.5
else:
self.monitor.set('no_op', 1)
reward -= 0.25
reward -= 0.1
for entity in cols:
if entity != self.state_slices.by_name("dirt"):
self.monitor.set(f'agent_{agent_state.i}_vs_{self.state_slices[entity]}', 1)
self.monitor.set('dirt_amount', current_dirt_amount)
self.monitor.set('dirty_tiles', dirty_tiles)
self.monitor.set('step', self.steps)
self.monitor.set('dirty_tile_count', dirty_tiles)
self.print(f"reward is {reward}")
# Potential based rewards ->
# track the last reward , minus the current reward = potential

View File

@@ -8,6 +8,8 @@ LEVEL_IDX = 0
AGENT_START_IDX = 1
IS_FREE_CELL = 0
IS_OCCUPIED_CELL = 1
TO_BE_AVERAGED = ['dirt_amount', 'dirty_tiles']
IGNORED_DF_COLUMNS = ['Episode', 'Run', 'train_step', 'step', 'index']
# Utility functions

View File

@@ -4,7 +4,9 @@ from collections import defaultdict
from stable_baselines3.common.callbacks import BaseCallback
from environments.helpers import IGNORED_DF_COLUMNS
from environments.logging.plotting import prepare_plot
import pandas as pd
class FactoryMonitor:
@@ -59,16 +61,12 @@ class MonitorCallback(BaseCallback):
def __init__(self, env, filepath=Path('debug_out/monitor.pick'), plotting=True):
super(MonitorCallback, self).__init__()
self.filepath = Path(filepath)
self._monitor_list = list()
self._monitor_df = pd.DataFrame()
self.env = env
self.plotting = plotting
self.started = False
self.closed = False
@property
def monitor_as_df_list(self):
return [x.to_pd_dataframe() for x in self._monitor_list]
def __enter__(self):
self._on_training_start()
@@ -89,11 +87,10 @@ class MonitorCallback(BaseCallback):
else:
# self.out_file.unlink(missing_ok=True)
with self.filepath.open('wb') as f:
pickle.dump(self.monitor_as_df_list, f, protocol=pickle.HIGHEST_PROTOCOL)
pickle.dump(self._monitor_df.reset_index(), f, protocol=pickle.HIGHEST_PROTOCOL)
if self.plotting:
print('Monitor files were dumped to disk, now plotting....')
# %% Imports
import pandas as pd
# %% Load MonitorList from Disk
with self.filepath.open('rb') as f:
monitor_list = pickle.load(f)
@@ -111,14 +108,21 @@ class MonitorCallback(BaseCallback):
if column != 'episode':
df[f'{column}_roll'] = df[column].rolling(window=50).mean()
# result.tail()
prepare_plot(filepath=self.filepath, results_df=df.filter(regex=(".+_roll")), tag='monitor')
prepare_plot(filepath=self.filepath, results_df=df.filter(regex=(".+_roll")))
print('Plotting done.')
self.closed = True
def _on_step(self) -> bool:
if self.locals['dones'].item():
self._monitor_list.append(self.env.monitor)
else:
pass
for env_idx, done in enumerate(self.locals.get('dones', [])):
if done:
env_monitor_df = self.locals['infos'][env_idx]['monitor'].to_pd_dataframe()
columns = [col for col in env_monitor_df.columns if col not in IGNORED_DF_COLUMNS]
env_monitor_df = env_monitor_df.aggregate(
{col: 'mean' if 'amount' in col or 'count' in col else 'sum' for col in columns}
)
env_monitor_df['episode'] = len(self._monitor_df)
self._monitor_df = self._monitor_df.append([env_monitor_df])
else:
pass
return True

View File

@@ -29,7 +29,7 @@ def plot(filepath, ext='png', **kwargs):
figure.savefig(str(filepath), format=ext)
def prepare_plot(filepath, results_df, ext='png', tag=''):
def prepare_plot(filepath, results_df, ext='png'):
_ = sns.lineplot(data=results_df, x='Episode', y='Score', hue='Measurement', ci='sd')
@@ -50,8 +50,7 @@ def prepare_plot(filepath, results_df, ext='png', tag=''):
}
try:
plot(filepath, ext=ext, tag=tag, **tex_fonts)
plot(filepath, ext=ext, **tex_fonts)
except (FileNotFoundError, RuntimeError):
tex_fonts['text.usetex'] = False
plot(filepath, ext=ext, tag=tag, **tex_fonts)
plt.show()
plot(filepath, ext=ext, **tex_fonts)

View File

@@ -32,7 +32,7 @@ class TraningMonitor(BaseCallback):
df.to_csv(self.filepath, mode='a', header=False)
def _on_step(self) -> bool:
for idx, done in np.ndenumerate(self.locals['dones']):
for idx, done in np.ndenumerate(self.locals.get('dones', [])):
idx = idx[0]
# self.values[self.num_timesteps].update(**{f'reward_env_{idx}': self.locals['rewards'][idx]})
self.rewards[idx] += self.locals['rewards'][idx]