Getting Dirty

Viz
This commit is contained in:
steffen-illium 2021-05-17 16:50:54 +02:00
parent 2ba095767d
commit 27f5abad64
3 changed files with 78 additions and 57 deletions

View File

@ -0,0 +1,47 @@
from collections import defaultdict
class FactoryMonitor:
def __init__(self, env):
self._env = env
self._monitor = defaultdict(lambda: defaultdict(lambda: 0))
self._last_vals = defaultdict(lambda: 0)
def __iter__(self):
for key, value in self._monitor.items():
yield key, dict(value)
def add(self, key, value, step=None):
assert step is None or step >= 1 # Is this good practice?
step = step or self._env.steps
self._last_vals[key] = self._last_vals[key] + value
self._monitor[key][step] = self._last_vals[key]
return self._last_vals[key]
def set(self, key, value, step=None):
assert step is None or step >= 1 # Is this good practice?
step = step or self._env.steps
self._last_vals[key] = value
self._monitor[key][step] = self._last_vals[key]
return self._last_vals[key]
def remove(self, key, value, step=None):
assert step is None or step >= 1 # Is this good practice?
step = step or self._env.steps
self._last_vals[key] = self._last_vals[key] - value
self._monitor[key][step] = self._last_vals[key]
return self._last_vals[key]
def to_dict(self):
return dict(self)
def to_pd_dataframe(self):
import pandas as pd
df = pd.DataFrame.from_dict(self.to_dict())
df.loc[0] = df.iloc[0].fillna(0)
df = df.fillna(method='ffill')
return df
def reset(self):
raise RuntimeError("DO NOT DO THIS! Always initalize a new Monitor per Env-Run.")

View File

@ -1,10 +1,10 @@
from collections import defaultdict
from typing import List
from typing import List, Union
import numpy as np
from pathlib import Path
from environments import helpers as h
from environments.factory._factory_monitor import FactoryMonitor
class AgentState:
@ -29,51 +29,6 @@ class AgentState:
raise AttributeError(f'"{key}" cannot be updated, this attr is not a part of {self.__class__.__name__}')
class FactoryMonitor:
def __init__(self, env):
self._env = env
self._monitor = defaultdict(lambda: defaultdict(lambda: 0))
self._last_vals = defaultdict(lambda: 0)
def __iter__(self):
for key, value in self._monitor.items():
yield key, dict(value)
def add(self, key, value, step=None):
assert step is None or step >= 1 # Is this good practice?
step = step or self._env.steps
self._last_vals[key] = self._last_vals[key] + value
self._monitor[key][step] = self._last_vals[key]
return self._last_vals[key]
def set(self, key, value, step=None):
assert step is None or step >= 1 # Is this good practice?
step = step or self._env.steps
self._last_vals[key] = value
self._monitor[key][step] = self._last_vals[key]
return self._last_vals[key]
def remove(self, key, value, step=None):
assert step is None or step >= 1 # Is this good practice?
step = step or self._env.steps
self._last_vals[key] = self._last_vals[key] - value
self._monitor[key][step] = self._last_vals[key]
return self._last_vals[key]
def to_dict(self):
return dict(self)
def to_pd_dataframe(self):
import pandas as pd
return pd.DataFrame.from_dict(self.to_dict())
def reset(self):
raise RuntimeError("DO NOT DO THIS! Always initalize a new Monitor per Env-Run.")
class BaseFactory:
@property
@ -192,9 +147,19 @@ class BaseFactory:
pos_x, pos_y = positions[0] # a.flatten()
return pos_x, pos_y
@property
def free_cells(self) -> np.ndarray:
free_cells = self.state.sum(0)
def free_cells(self, excluded_slices: Union[None, List, int] = None) -> np.ndarray:
excluded_slices = excluded_slices or []
assert isinstance(excluded_slices, (int, list))
excluded_slices = excluded_slices if isinstance(excluded_slices, list) else [excluded_slices]
state = self.state
if excluded_slices:
# Todo: Is there a cleaner way?
inds = list(range(self.state.shape[0]))
excluded_slices = [inds[x] if x < 0 else x for x in excluded_slices]
state = self.state[[x for x in inds if x not in excluded_slices]]
free_cells = state.sum(0)
free_cells = np.argwhere(free_cells == h.IS_FREE_CELL)
np.random.shuffle(free_cells)
return free_cells

View File

@ -26,7 +26,7 @@ class GettingDirty(BaseFactory):
self.slice_strings.update({self.state.shape[0]-1: 'dirt'})
def spawn_dirt(self) -> None:
free_for_dirt = self.free_cells
free_for_dirt = self.free_cells(excluded_slices=DIRT_INDEX)
# randomly distribute dirt across the grid
n_dirt_tiles = int(random.uniform(0, self._dirt_properties.max_spawn_ratio) * len(free_for_dirt))
for x, y in free_for_dirt[:n_dirt_tiles]:
@ -43,6 +43,11 @@ class GettingDirty(BaseFactory):
self.state[DIRT_INDEX][pos] = max(new_dirt_amount, h.IS_FREE_CELL)
return pos, cleanup_was_sucessfull
def step(self, actions):
_, _, _, info = super(GettingDirty, self).step(actions)
self.spawn_dirt()
return self.state, self.cumulative_reward, self.done, info
def additional_actions(self, agent_i: int, action: int) -> ((int, int), bool):
if action != self._is_moving_action(action):
if self._is_clean_up_action(action):
@ -53,7 +58,7 @@ class GettingDirty(BaseFactory):
self.monitor.add('dirt_cleaned', self._dirt_properties.clean_amount)
else:
print(f'Agent {agent_i} just tried to clean up some dirt at {agent_i_pos}, but was unsucsessfull.')
self.monitor.add('failed_attempts', 1)
self.monitor.add('failed_cleanup_attempt', 1)
return agent_i_pos, valid
else:
raise RuntimeError('This should not happen!!!')
@ -76,6 +81,9 @@ class GettingDirty(BaseFactory):
if self._is_clean_up_action(agent_state.action) and agent_state.action_valid:
this_step_reward += 1
for entity in collisions:
if entity != self.string_slices["dirt"]:
self.monitor.add(f'agent_{agent_state.i}_vs_{self.slice_strings[entity]}', 1)
self.monitor.set('dirt_amount', self.state[DIRT_INDEX].sum())
self.monitor.set('dirty_tiles', len(np.nonzero(self.state[DIRT_INDEX])))
return this_step_reward, {}
@ -87,15 +95,16 @@ if __name__ == '__main__':
factory = GettingDirty(n_agents=1, dirt_properties=dirt_props)
monitor_list = list()
for epoch in range(100):
random_actions = [random.randint(0, 7) for _ in range(200)]
random_actions = [random.randint(0, 8) for _ in range(200)]
state, r, done, _ = factory.reset()
for action in random_actions:
state, r, done, info = factory.step(action)
monitor_list.append(factory.monitor)
print(f'Factory run done, reward is:\n {r}')
monitor_list.append(factory.monitor.to_pd_dataframe())
print(f'Factory run {epoch} done, reward is:\n {r}')
from pathlib import Path
import pickle
out_path = Path('debug_out')
out_path.mkdir(exist_ok=True, parents=True)
with (out_path / 'monitor.pick').open('rb') as f:
pickle.dump(monitor_list, f)
with (out_path / 'monitor.pick').open('wb') as f:
pickle.dump(monitor_list, f, protocol=pickle.HIGHEST_PROTOCOL)