mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-07-05 09:01:36 +02:00
Adapt base_ac.py and utils.py to be compatible with refactored environment
This commit is contained in:
@ -18,7 +18,8 @@ class Names:
|
||||
HIDDEN_ACTOR = 'hidden_actor'
|
||||
HIDDEN_CRITIC = 'hidden_critic'
|
||||
AGENT = 'agent'
|
||||
ENV = 'environment'
|
||||
ENV = 'env'
|
||||
ENV_NAME = 'env_name'
|
||||
N_AGENTS = 'n_agents'
|
||||
ALGORITHM = 'algorithm'
|
||||
MAX_STEPS = 'max_steps'
|
||||
@ -27,6 +28,8 @@ class Names:
|
||||
CRITIC = 'critic'
|
||||
BATCH_SIZE = 'bnatch_size'
|
||||
N_ACTIONS = 'n_actions'
|
||||
TRAIN_RENDER = 'train_render'
|
||||
EVAL_RENDER = 'eval_render'
|
||||
|
||||
|
||||
nms = Names
|
||||
@ -35,10 +38,10 @@ ListOrTensor = Union[List, torch.Tensor]
|
||||
|
||||
class BaseActorCritic:
|
||||
def __init__(self, cfg):
|
||||
add_env_props(cfg)
|
||||
self.factory = add_env_props(cfg)
|
||||
self.__training = True
|
||||
self.cfg = cfg
|
||||
self.n_agents = cfg[nms.ENV][nms.N_AGENTS]
|
||||
self.n_agents = cfg[nms.AGENT][nms.N_AGENTS]
|
||||
self.reset_memory_after_epoch = True
|
||||
self.setup()
|
||||
|
||||
@ -88,7 +91,9 @@ class BaseActorCritic:
|
||||
|
||||
@torch.no_grad()
|
||||
def train_loop(self, checkpointer=None):
|
||||
env = instantiate_class(self.cfg[nms.ENV])
|
||||
env = self.factory
|
||||
if self.cfg[nms.ENV][nms.TRAIN_RENDER]:
|
||||
env.render()
|
||||
n_steps, max_steps = [self.cfg[nms.ALGORITHM][k] for k in [nms.N_STEPS, nms.MAX_STEPS]]
|
||||
tm = MARLActorCriticMemory(self.n_agents, self.cfg[nms.ALGORITHM].get(nms.BUFFER_SIZE, n_steps))
|
||||
global_steps, episode, df_results = 0, 0, []
|
||||
@ -96,6 +101,7 @@ class BaseActorCritic:
|
||||
|
||||
while global_steps < max_steps:
|
||||
obs = env.reset()
|
||||
obs = list(obs.values())
|
||||
last_hiddens = self.init_hidden()
|
||||
last_action, reward = [-1] * self.n_agents, [0.] * self.n_agents
|
||||
done, rew_log = [False] * self.n_agents, 0
|
||||
@ -110,14 +116,20 @@ class BaseActorCritic:
|
||||
while not all(done):
|
||||
out = self.forward(obs, last_action, **last_hiddens)
|
||||
action = self.get_actions(out)
|
||||
next_obs, reward, done, info = env.step(action)
|
||||
_, next_obs, reward, done, info = env.step(action)
|
||||
done = [done] * self.n_agents if isinstance(done, bool) else done
|
||||
|
||||
if self.cfg[nms.ENV][nms.TRAIN_RENDER]:
|
||||
env.render()
|
||||
|
||||
last_hiddens = dict(hidden_actor=out[nms.HIDDEN_ACTOR],
|
||||
hidden_critic=out[nms.HIDDEN_CRITIC])
|
||||
|
||||
logits = torch.stack([tensor.squeeze(0) for tensor in out.get(nms.LOGITS, None)], dim=0)
|
||||
values = torch.stack([tensor.squeeze(0) for tensor in out.get(nms.CRITIC, None)], dim=0)
|
||||
|
||||
tm.add(observation=obs, action=action, reward=reward, done=done,
|
||||
logits=out.get(nms.LOGITS, None), values=out.get(nms.CRITIC, None),
|
||||
logits=logits, values=values,
|
||||
**last_hiddens)
|
||||
|
||||
obs = next_obs
|
||||
@ -139,7 +151,8 @@ class BaseActorCritic:
|
||||
|
||||
if global_steps >= max_steps:
|
||||
break
|
||||
print(f'reward at episode: {episode} = {rew_log}')
|
||||
if global_steps%100 == 0:
|
||||
print(f'reward at episode: {episode} = {rew_log}')
|
||||
episode += 1
|
||||
df_results.append([episode, rew_log, *reward])
|
||||
df_results = pd.DataFrame(df_results,
|
||||
@ -151,23 +164,26 @@ class BaseActorCritic:
|
||||
|
||||
@torch.inference_mode(True)
|
||||
def eval_loop(self, n_episodes, render=False):
|
||||
env = instantiate_class(self.cfg[nms.ENV])
|
||||
env = self.factory
|
||||
if self.cfg[nms.ENV][nms.EVAL_RENDER]:
|
||||
env.render()
|
||||
episode, results = 0, []
|
||||
while episode < n_episodes:
|
||||
obs = env.reset()
|
||||
obs = list(obs.values())
|
||||
last_hiddens = self.init_hidden()
|
||||
last_action, reward = [-1] * self.n_agents, [0.] * self.n_agents
|
||||
done, rew_log, eps_rew = [False] * self.n_agents, 0, torch.zeros(self.n_agents)
|
||||
while not all(done):
|
||||
if render:
|
||||
env.render()
|
||||
|
||||
out = self.forward(obs, last_action, **last_hiddens)
|
||||
action = self.get_actions(out)
|
||||
next_obs, reward, done, info = env.step(action)
|
||||
_, next_obs, reward, done, info = env.step(action)
|
||||
|
||||
if self.cfg[nms.ENV][nms.EVAL_RENDER]:
|
||||
env.render()
|
||||
|
||||
if isinstance(done, bool):
|
||||
done = [done] * obs.shape[0]
|
||||
done = [done] * obs[0].shape[0]
|
||||
obs = next_obs
|
||||
last_action = action
|
||||
last_hiddens = dict(hidden_actor=out.get(nms.HIDDEN_ACTOR, None),
|
||||
@ -176,7 +192,7 @@ class BaseActorCritic:
|
||||
eps_rew += torch.tensor(reward)
|
||||
results.append(eps_rew.tolist() + [sum(eps_rew).item()] + [episode])
|
||||
episode += 1
|
||||
agent_columns = [f'agent#{i}' for i in range(self.cfg['environment']['n_agents'])]
|
||||
agent_columns = [f'agent#{i}' for i in range(self.cfg[nms.ENV][nms.N_AGENTS])]
|
||||
results = pd.DataFrame(results, columns=agent_columns + ['sum', 'episode'])
|
||||
results = pd.melt(results, id_vars=['episode'], value_vars=agent_columns + ['sum'],
|
||||
value_name='reward', var_name='agent')
|
||||
@ -200,7 +216,7 @@ class BaseActorCritic:
|
||||
def actor_critic(self, tm, network, gamma, entropy_coef, vf_coef, gae_coef=0.0, **kwargs):
|
||||
obs, actions, done, reward = tm.observation, tm.action, tm.done[:, 1:], tm.reward[:, 1:]
|
||||
|
||||
out = network(obs, actions, tm.hidden_actor[:, 0], tm.hidden_critic[:, 0])
|
||||
out = network(obs, actions, tm.hidden_actor[:, 0].squeeze(0), tm.hidden_critic[:, 0].squeeze(0))
|
||||
logits = out[nms.LOGITS][:, :-1] # last one only needed for v_{t+1}
|
||||
critic = out[nms.CRITIC]
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
agent:
|
||||
classname: algorithms.marl.networks.RecurrentAC
|
||||
classname: marl_factory_grid.algorithms.marl.networks.RecurrentAC
|
||||
n_agents: 2
|
||||
obs_emb_size: 96
|
||||
action_emb_size: 16
|
||||
@ -7,18 +7,20 @@ agent:
|
||||
hidden_size_critic: 64
|
||||
use_agent_embedding: False
|
||||
env:
|
||||
classname: environments.factory.make
|
||||
env_name: "DirtyFactory-v0"
|
||||
classname: marl_factory_grid.configs
|
||||
env_name: "simple_crossing"
|
||||
n_agents: 2
|
||||
max_steps: 250
|
||||
pomdp_r: 2
|
||||
stack_n_frames: 0
|
||||
individual_rewards: True
|
||||
method: algorithms.marl.LoopSEAC
|
||||
train_render: True
|
||||
eval_render: True
|
||||
method: marl_factory_grid.algorithms.marl.LoopSEAC
|
||||
algorithm:
|
||||
gamma: 0.99
|
||||
entropy_coef: 0.01
|
||||
vf_coef: 0.5
|
||||
n_steps: 5
|
||||
max_steps: 1000000
|
||||
max_steps: 10000
|
||||
|
||||
|
Reference in New Issue
Block a user