Adapt base_ac.py and utils.py to be compatible with refactored environment

This commit is contained in:
Julian Schönberger
2024-03-27 17:04:14 +01:00
parent 1e4ec254f4
commit 086a921929
4 changed files with 66 additions and 23 deletions

View File

@ -18,7 +18,8 @@ class Names:
HIDDEN_ACTOR = 'hidden_actor'
HIDDEN_CRITIC = 'hidden_critic'
AGENT = 'agent'
ENV = 'environment'
ENV = 'env'
ENV_NAME = 'env_name'
N_AGENTS = 'n_agents'
ALGORITHM = 'algorithm'
MAX_STEPS = 'max_steps'
@ -27,6 +28,8 @@ class Names:
CRITIC = 'critic'
BATCH_SIZE = 'bnatch_size'
N_ACTIONS = 'n_actions'
TRAIN_RENDER = 'train_render'
EVAL_RENDER = 'eval_render'
nms = Names
@ -35,10 +38,10 @@ ListOrTensor = Union[List, torch.Tensor]
class BaseActorCritic:
def __init__(self, cfg):
add_env_props(cfg)
self.factory = add_env_props(cfg)
self.__training = True
self.cfg = cfg
self.n_agents = cfg[nms.ENV][nms.N_AGENTS]
self.n_agents = cfg[nms.AGENT][nms.N_AGENTS]
self.reset_memory_after_epoch = True
self.setup()
@ -88,7 +91,9 @@ class BaseActorCritic:
@torch.no_grad()
def train_loop(self, checkpointer=None):
env = instantiate_class(self.cfg[nms.ENV])
env = self.factory
if self.cfg[nms.ENV][nms.TRAIN_RENDER]:
env.render()
n_steps, max_steps = [self.cfg[nms.ALGORITHM][k] for k in [nms.N_STEPS, nms.MAX_STEPS]]
tm = MARLActorCriticMemory(self.n_agents, self.cfg[nms.ALGORITHM].get(nms.BUFFER_SIZE, n_steps))
global_steps, episode, df_results = 0, 0, []
@ -96,6 +101,7 @@ class BaseActorCritic:
while global_steps < max_steps:
obs = env.reset()
obs = list(obs.values())
last_hiddens = self.init_hidden()
last_action, reward = [-1] * self.n_agents, [0.] * self.n_agents
done, rew_log = [False] * self.n_agents, 0
@ -110,14 +116,20 @@ class BaseActorCritic:
while not all(done):
out = self.forward(obs, last_action, **last_hiddens)
action = self.get_actions(out)
next_obs, reward, done, info = env.step(action)
_, next_obs, reward, done, info = env.step(action)
done = [done] * self.n_agents if isinstance(done, bool) else done
if self.cfg[nms.ENV][nms.TRAIN_RENDER]:
env.render()
last_hiddens = dict(hidden_actor=out[nms.HIDDEN_ACTOR],
hidden_critic=out[nms.HIDDEN_CRITIC])
logits = torch.stack([tensor.squeeze(0) for tensor in out.get(nms.LOGITS, None)], dim=0)
values = torch.stack([tensor.squeeze(0) for tensor in out.get(nms.CRITIC, None)], dim=0)
tm.add(observation=obs, action=action, reward=reward, done=done,
logits=out.get(nms.LOGITS, None), values=out.get(nms.CRITIC, None),
logits=logits, values=values,
**last_hiddens)
obs = next_obs
@ -139,7 +151,8 @@ class BaseActorCritic:
if global_steps >= max_steps:
break
print(f'reward at episode: {episode} = {rew_log}')
if global_steps%100 == 0:
print(f'reward at episode: {episode} = {rew_log}')
episode += 1
df_results.append([episode, rew_log, *reward])
df_results = pd.DataFrame(df_results,
@ -151,23 +164,26 @@ class BaseActorCritic:
@torch.inference_mode(True)
def eval_loop(self, n_episodes, render=False):
env = instantiate_class(self.cfg[nms.ENV])
env = self.factory
if self.cfg[nms.ENV][nms.EVAL_RENDER]:
env.render()
episode, results = 0, []
while episode < n_episodes:
obs = env.reset()
obs = list(obs.values())
last_hiddens = self.init_hidden()
last_action, reward = [-1] * self.n_agents, [0.] * self.n_agents
done, rew_log, eps_rew = [False] * self.n_agents, 0, torch.zeros(self.n_agents)
while not all(done):
if render:
env.render()
out = self.forward(obs, last_action, **last_hiddens)
action = self.get_actions(out)
next_obs, reward, done, info = env.step(action)
_, next_obs, reward, done, info = env.step(action)
if self.cfg[nms.ENV][nms.EVAL_RENDER]:
env.render()
if isinstance(done, bool):
done = [done] * obs.shape[0]
done = [done] * obs[0].shape[0]
obs = next_obs
last_action = action
last_hiddens = dict(hidden_actor=out.get(nms.HIDDEN_ACTOR, None),
@ -176,7 +192,7 @@ class BaseActorCritic:
eps_rew += torch.tensor(reward)
results.append(eps_rew.tolist() + [sum(eps_rew).item()] + [episode])
episode += 1
agent_columns = [f'agent#{i}' for i in range(self.cfg['environment']['n_agents'])]
agent_columns = [f'agent#{i}' for i in range(self.cfg[nms.ENV][nms.N_AGENTS])]
results = pd.DataFrame(results, columns=agent_columns + ['sum', 'episode'])
results = pd.melt(results, id_vars=['episode'], value_vars=agent_columns + ['sum'],
value_name='reward', var_name='agent')
@ -200,7 +216,7 @@ class BaseActorCritic:
def actor_critic(self, tm, network, gamma, entropy_coef, vf_coef, gae_coef=0.0, **kwargs):
obs, actions, done, reward = tm.observation, tm.action, tm.done[:, 1:], tm.reward[:, 1:]
out = network(obs, actions, tm.hidden_actor[:, 0], tm.hidden_critic[:, 0])
out = network(obs, actions, tm.hidden_actor[:, 0].squeeze(0), tm.hidden_critic[:, 0].squeeze(0))
logits = out[nms.LOGITS][:, :-1] # last one only needed for v_{t+1}
critic = out[nms.CRITIC]

View File

@ -1,5 +1,5 @@
agent:
classname: algorithms.marl.networks.RecurrentAC
classname: marl_factory_grid.algorithms.marl.networks.RecurrentAC
n_agents: 2
obs_emb_size: 96
action_emb_size: 16
@ -7,18 +7,20 @@ agent:
hidden_size_critic: 64
use_agent_embedding: False
env:
classname: environments.factory.make
env_name: "DirtyFactory-v0"
classname: marl_factory_grid.configs
env_name: "simple_crossing"
n_agents: 2
max_steps: 250
pomdp_r: 2
stack_n_frames: 0
individual_rewards: True
method: algorithms.marl.LoopSEAC
train_render: True
eval_render: True
method: marl_factory_grid.algorithms.marl.LoopSEAC
algorithm:
gamma: 0.99
entropy_coef: 0.01
vf_coef: 0.5
n_steps: 5
max_steps: 1000000
max_steps: 10000

View File

@ -3,6 +3,8 @@ from pathlib import Path
import numpy as np
import yaml
from marl_factory_grid import Factory
def load_class(classname):
from importlib import import_module
@ -55,9 +57,17 @@ def load_yaml_file(path: Path):
def add_env_props(cfg):
env = instantiate_class(cfg['environment'].copy())
cfg['agent'].update(dict(observation_size=list(env.observation_space.shape),
n_actions=env.action_space.n))
# Path to config File
env_path = Path(f'../marl_factory_grid/configs/{cfg["env"]["env_name"]}.yaml')
# Env Init
factory = Factory(env_path)
_ = factory.reset()
# Agent Init
cfg['agent'].update(dict(observation_size=list(factory.observation_space[0].shape),
n_actions=factory.action_space[0].n))
return factory
class Checkpointer(object):