349 lines
16 KiB
Python
349 lines
16 KiB
Python
from random import choice
|
|
|
|
import torch
|
|
from functools import reduce
|
|
from operator import mul
|
|
|
|
from torch import nn
|
|
from torch.optim import Adam
|
|
|
|
from datasets.trajectory_dataset import TrajData
|
|
from ml_lib.evaluation.classification import ROCEvaluation
|
|
from ml_lib.modules.blocks import ConvModule, ResidualModule, DeConvModule
|
|
from ml_lib.modules.utils import LightningBaseModule, Flatten
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
class CNNRouteGeneratorModel(LightningBaseModule):
|
|
|
|
name = 'CNNRouteGenerator'
|
|
|
|
def configure_optimizers(self):
|
|
return Adam(self.parameters(), lr=self.hparams.train_param.lr)
|
|
|
|
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
|
batch_x, alternative = batch_xy
|
|
generated_alternative, z, mu, logvar = self(batch_x)
|
|
element_wise_loss = self.criterion(generated_alternative, alternative)
|
|
# see Appendix B from VAE paper:
|
|
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
|
|
# https://arxiv.org/abs/1312.6114
|
|
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
|
|
|
|
kld_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
|
# Dimensional Resizing TODO: Does This make sense? Sanity Check it!
|
|
# kld_loss /= reduce(mul, self.in_shape)
|
|
# kld_loss *= self.hparams.data_param.dataset_length / self.hparams.train_param.batch_size * 100
|
|
|
|
loss = (kld_loss + element_wise_loss) / 2
|
|
return dict(loss=loss, log=dict(element_wise_loss=element_wise_loss, loss=loss, kld_loss=kld_loss))
|
|
|
|
def _test_val_step(self, batch_xy, batch_nb, *args):
|
|
batch_x, alternative = batch_xy
|
|
map_array = batch_x[0]
|
|
trajectory = batch_x[1]
|
|
label = batch_x[2].max()
|
|
|
|
z, _, _ = self.encode(batch_x)
|
|
generated_alternative = self.generate(z)
|
|
|
|
return dict(map_array=map_array, trajectory=trajectory, batch_nb=batch_nb, label=label,
|
|
generated_alternative=generated_alternative, pred_label=-1, alternative=alternative
|
|
)
|
|
|
|
def _test_val_epoch_end(self, outputs, test=False):
|
|
maps, trajectories, labels, val_restul_dict = self.generate_random()
|
|
|
|
from ml_lib.visualization.generator_eval import GeneratorVisualizer
|
|
g = GeneratorVisualizer(maps, trajectories, labels, val_restul_dict)
|
|
fig = g.draw()
|
|
self.logger.log_image(f'{self.name}_Output', fig, step=self.global_step)
|
|
plt.clf()
|
|
|
|
return dict(epoch=self.current_epoch)
|
|
|
|
def validation_step(self, *args):
|
|
return self._test_val_step(*args)
|
|
|
|
def validation_epoch_end(self, outputs: list):
|
|
return self._test_val_epoch_end(outputs)
|
|
|
|
def test_step(self, *args):
|
|
return self._test_val_step(*args)
|
|
|
|
def test_epoch_end(self, outputs):
|
|
return self._test_val_epoch_end(outputs, test=True)
|
|
|
|
def __init__(self, *params, issubclassed=False):
|
|
super(CNNRouteGeneratorModel, self).__init__(*params)
|
|
|
|
if not issubclassed:
|
|
# Dataset
|
|
self.dataset = TrajData(self.hparams.data_param.map_root, mode='generator_all_in_map',
|
|
length=self.hparams.data_param.dataset_length, normalized=True)
|
|
self.criterion = nn.MSELoss()
|
|
|
|
# Additional Attributes #
|
|
#######################################################
|
|
self.map_shape = self.dataset.map_shapes_max
|
|
self.trajectory_features = 4
|
|
self.res_net = self.hparams.model_param.use_res_net
|
|
self.lat_dim = self.hparams.model_param.lat_dim
|
|
self.feature_dim = self.lat_dim * 10
|
|
########################################################
|
|
|
|
# NN Nodes
|
|
###################################################
|
|
#
|
|
# Utils
|
|
self.activation = nn.ReLU()
|
|
self.sigmoid = nn.Sigmoid()
|
|
|
|
#
|
|
# Map Encoder
|
|
self.enc_conv_0 = ConvModule(self.map_shape, conv_kernel=3, conv_stride=1, conv_padding=1,
|
|
conv_filters=self.hparams.model_param.filters[0],
|
|
use_norm=self.hparams.model_param.use_norm,
|
|
use_bias=self.hparams.model_param.use_bias)
|
|
|
|
self.enc_res_1 = ResidualModule(self.enc_conv_0.shape, ConvModule, 2, conv_kernel=5, conv_stride=1,
|
|
conv_padding=2, conv_filters=self.hparams.model_param.filters[0],
|
|
use_norm=self.hparams.model_param.use_norm,
|
|
use_bias=self.hparams.model_param.use_bias)
|
|
self.enc_conv_1a = ConvModule(self.enc_res_1.shape, conv_kernel=3, conv_stride=1, conv_padding=0,
|
|
conv_filters=self.hparams.model_param.filters[1],
|
|
use_norm=self.hparams.model_param.use_norm,
|
|
use_bias=self.hparams.model_param.use_bias)
|
|
self.enc_conv_1b = ConvModule(self.enc_conv_1a.shape, conv_kernel=3, conv_stride=2, conv_padding=0,
|
|
conv_filters=self.hparams.model_param.filters[1],
|
|
use_norm=self.hparams.model_param.use_norm,
|
|
use_bias=self.hparams.model_param.use_bias)
|
|
|
|
self.enc_res_2 = ResidualModule(self.enc_conv_1b.shape, ConvModule, 2, conv_kernel=5, conv_stride=1,
|
|
conv_padding=2, conv_filters=self.hparams.model_param.filters[1],
|
|
use_norm=self.hparams.model_param.use_norm,
|
|
use_bias=self.hparams.model_param.use_bias)
|
|
self.enc_conv_2a = ConvModule(self.enc_res_2.shape, conv_kernel=5, conv_stride=1, conv_padding=0,
|
|
conv_filters=self.hparams.model_param.filters[2],
|
|
use_norm=self.hparams.model_param.use_norm,
|
|
use_bias=self.hparams.model_param.use_bias)
|
|
self.enc_conv_2b = ConvModule(self.enc_conv_2a.shape, conv_kernel=5, conv_stride=1, conv_padding=0,
|
|
conv_filters=self.hparams.model_param.filters[2],
|
|
use_norm=self.hparams.model_param.use_norm,
|
|
use_bias=self.hparams.model_param.use_bias)
|
|
|
|
self.enc_res_3 = ResidualModule(self.enc_conv_2b.shape, ConvModule, 2, conv_kernel=7, conv_stride=1,
|
|
conv_padding=3, conv_filters=self.hparams.model_param.filters[2],
|
|
use_norm=self.hparams.model_param.use_norm,
|
|
use_bias=self.hparams.model_param.use_bias)
|
|
self.enc_conv_3a = ConvModule(self.enc_res_3.shape, conv_kernel=7, conv_stride=1, conv_padding=0,
|
|
conv_filters=self.hparams.model_param.filters[2],
|
|
use_norm=self.hparams.model_param.use_norm,
|
|
use_bias=self.hparams.model_param.use_bias)
|
|
self.enc_conv_3b = ConvModule(self.enc_conv_3a.shape, conv_kernel=7, conv_stride=1, conv_padding=0,
|
|
conv_filters=self.hparams.model_param.filters[2],
|
|
use_norm=self.hparams.model_param.use_norm,
|
|
use_bias=self.hparams.model_param.use_bias)
|
|
|
|
# Trajectory Encoder
|
|
self.env_gru_1 = nn.GRU(input_size=self.trajectory_features, hidden_size=self.feature_dim,
|
|
num_layers=3, batch_first=True)
|
|
|
|
self.enc_flat = Flatten(self.enc_conv_3b.shape)
|
|
self.enc_lin_1 = nn.Linear(self.enc_flat.shape, self.feature_dim)
|
|
|
|
#
|
|
# Mixed Encoder
|
|
self.enc_lin_2 = nn.Linear(self.feature_dim, self.feature_dim)
|
|
self.enc_norm = nn.BatchNorm1d(self.feature_dim) if self.hparams.model_param.use_norm else lambda x: x
|
|
|
|
#
|
|
# Variational Bottleneck
|
|
self.mu = nn.Linear(self.feature_dim, self.lat_dim)
|
|
self.logvar = nn.Linear(self.feature_dim, self.lat_dim)
|
|
|
|
#
|
|
# Alternative Generator
|
|
self.gen_lin_1 = nn.Linear(self.hparams.model_param.lat_dim, self.feature_dim)
|
|
|
|
self.gen_lin_2 = nn.Linear(self.feature_dim, self.enc_flat.shape)
|
|
|
|
self.gen_gru_x = nn.GRU(None, None, batch_first=True)
|
|
|
|
|
|
|
|
def forward(self, batch_x):
|
|
#
|
|
# Encode
|
|
z, mu, logvar = self.encode(batch_x)
|
|
|
|
#
|
|
# Generate
|
|
alt_tensor = self.generate(z)
|
|
return alt_tensor, z, mu, logvar
|
|
|
|
@staticmethod
|
|
def reparameterize(mu, logvar):
|
|
std = torch.exp(0.5 * logvar)
|
|
eps = torch.randn_like(std)
|
|
return mu + eps * std
|
|
|
|
def encode(self, batch_x):
|
|
combined_tensor = self.enc_conv_0(batch_x)
|
|
combined_tensor = self.enc_res_1(combined_tensor) if self.use_res_net else combined_tensor
|
|
combined_tensor = self.enc_conv_1a(combined_tensor)
|
|
combined_tensor = self.enc_conv_1b(combined_tensor)
|
|
combined_tensor = self.enc_res_2(combined_tensor) if self.use_res_net else combined_tensor
|
|
combined_tensor = self.enc_conv_2a(combined_tensor)
|
|
combined_tensor = self.enc_conv_2b(combined_tensor)
|
|
combined_tensor = self.enc_res_3(combined_tensor) if self.use_res_net else combined_tensor
|
|
combined_tensor = self.enc_conv_3a(combined_tensor)
|
|
combined_tensor = self.enc_conv_3b(combined_tensor)
|
|
|
|
combined_tensor = self.enc_flat(combined_tensor)
|
|
combined_tensor = self.enc_lin_1(combined_tensor)
|
|
combined_tensor = self.enc_lin_2(combined_tensor)
|
|
|
|
combined_tensor = self.enc_norm(combined_tensor)
|
|
combined_tensor = self.activation(combined_tensor)
|
|
combined_tensor = self.enc_lin_2(combined_tensor)
|
|
combined_tensor = self.enc_norm(combined_tensor)
|
|
combined_tensor = self.activation(combined_tensor)
|
|
|
|
#
|
|
# Parameter and Sampling
|
|
mu = self.mu(combined_tensor)
|
|
logvar = self.logvar(combined_tensor)
|
|
z = self.reparameterize(mu, logvar)
|
|
return z, mu, logvar
|
|
|
|
def generate(self, z):
|
|
alt_tensor = self.gen_lin_1(z)
|
|
alt_tensor = self.activation(alt_tensor)
|
|
alt_tensor = self.gen_lin_2(alt_tensor)
|
|
alt_tensor = self.activation(alt_tensor)
|
|
alt_tensor = self.reshape_to_last_conv(alt_tensor)
|
|
alt_tensor = self.gen_deconv_1a(alt_tensor)
|
|
alt_tensor = self.gen_deconv_1b(alt_tensor)
|
|
alt_tensor = self.gen_deconv_2a(alt_tensor)
|
|
alt_tensor = self.gen_deconv_2b(alt_tensor)
|
|
alt_tensor = self.gen_deconv_3a(alt_tensor)
|
|
alt_tensor = self.gen_deconv_3b(alt_tensor)
|
|
alt_tensor = self.gen_deconv_out(alt_tensor)
|
|
# alt_tensor = self.activation(alt_tensor)
|
|
alt_tensor = self.sigmoid(alt_tensor)
|
|
return alt_tensor
|
|
|
|
def generate_random(self, n=6):
|
|
maps = [self.map_storage[choice(self.map_storage.keys_list)] for _ in range(n)]
|
|
|
|
trajectories = [x.get_random_trajectory() for x in maps]
|
|
trajectories = [x.draw_in_array(self.map_storage.max_map_size) for x in trajectories]
|
|
trajectories = [torch.as_tensor(x, dtype=torch.float32) for x in trajectories] * 2
|
|
trajectories = self._move_to_model_device(torch.stack(trajectories))
|
|
|
|
maps = [torch.as_tensor(x.as_array, dtype=torch.float32) for x in maps] * 2
|
|
maps = self._move_to_model_device(torch.stack(maps))
|
|
|
|
labels = self._move_to_model_device(torch.as_tensor([0] * n + [1] * n))
|
|
return maps, trajectories, labels, self._test_val_step(((maps, trajectories, labels), None), -9999)
|
|
|
|
|
|
class CNNRouteGeneratorDiscriminated(CNNRouteGeneratorModel):
|
|
|
|
name = 'CNNRouteGeneratorDiscriminated'
|
|
|
|
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
|
batch_x, label = batch_xy
|
|
|
|
generated_alternative, z, mu, logvar = self(batch_x)
|
|
map_array, trajectory = batch_x
|
|
|
|
map_stack = torch.cat((map_array, trajectory, generated_alternative), dim=1)
|
|
pred_label = self.discriminator(map_stack)
|
|
discriminated_bce_loss = self.criterion(pred_label, label.float().unsqueeze(-1))
|
|
|
|
# see Appendix B from VAE paper:
|
|
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
|
|
# https://arxiv.org/abs/1312.6114
|
|
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
|
|
kld_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
|
# Dimensional Resizing
|
|
kld_loss /= reduce(mul, self.in_shape)
|
|
|
|
loss = (kld_loss + discriminated_bce_loss) / 2
|
|
return dict(loss=loss, log=dict(loss=loss,
|
|
discriminated_bce_loss=discriminated_bce_loss,
|
|
kld_loss=kld_loss)
|
|
)
|
|
|
|
def _test_val_step(self, batch_xy, batch_nb, *args):
|
|
batch_x, label = batch_xy
|
|
|
|
generated_alternative, z, mu, logvar = self(batch_x)
|
|
map_array, trajectory = batch_x
|
|
|
|
map_stack = torch.cat((map_array, trajectory, generated_alternative), dim=1)
|
|
pred_label = self.discriminator(map_stack)
|
|
|
|
discriminated_bce_loss = self.criterion(pred_label, label.float().unsqueeze(-1))
|
|
return dict(discriminated_bce_loss=discriminated_bce_loss, batch_nb=batch_nb,
|
|
pred_label=pred_label, label=label, generated_alternative=generated_alternative)
|
|
|
|
def validation_step(self, *args):
|
|
return self._test_val_step(*args)
|
|
|
|
def validation_epoch_end(self, outputs: list):
|
|
return self._test_val_epoch_end(outputs)
|
|
|
|
def _test_val_epoch_end(self, outputs, test=False):
|
|
evaluation = ROCEvaluation(plot_roc=True)
|
|
pred_label = torch.cat([x['pred_label'] for x in outputs])
|
|
labels = torch.cat([x['label'] for x in outputs]).unsqueeze(1)
|
|
mean_losses = torch.stack([x['discriminated_bce_loss'] for x in outputs]).mean()
|
|
|
|
# Sci-py call ROC eval call is eval(true_label, prediction)
|
|
roc_auc, tpr, fpr = evaluation(labels.cpu().numpy(), pred_label.cpu().numpy(), )
|
|
if test:
|
|
# self.logger.log_metrics(score_dict)
|
|
self.logger.log_image(f'{self.name}_ROC-Curve', plt.gcf(), step=self.global_step)
|
|
plt.clf()
|
|
|
|
maps, trajectories, labels, val_restul_dict = self.generate_random()
|
|
|
|
from ml_lib.visualization.generator_eval import GeneratorVisualizer
|
|
g = GeneratorVisualizer(maps, trajectories, labels, val_restul_dict)
|
|
fig = g.draw()
|
|
self.logger.log_image(f'{self.name}_Output', fig, step=self.global_step)
|
|
plt.clf()
|
|
|
|
return dict(mean_losses=mean_losses, roc_auc=roc_auc, epoch=self.current_epoch)
|
|
|
|
def test_step(self, *args):
|
|
return self._test_val_step(*args)
|
|
|
|
def test_epoch_end(self, outputs):
|
|
return self._test_val_epoch_end(outputs, test=True)
|
|
|
|
@property
|
|
def discriminator(self):
|
|
if self._disc is None:
|
|
raise RuntimeError('Set the Discriminator first; "set_discriminator(disc_model)')
|
|
return self._disc
|
|
|
|
def set_discriminator(self, disc_model):
|
|
if self._disc is not None:
|
|
raise RuntimeError('Discriminator has already been set... What are trying to do?')
|
|
self._disc = disc_model
|
|
|
|
def __init__(self, *params):
|
|
super(CNNRouteGeneratorDiscriminated, self).__init__(*params, issubclassed=True)
|
|
|
|
self._disc = None
|
|
|
|
self.criterion = nn.BCELoss()
|
|
|
|
self.dataset = TrajData(self.hparams.data_param.map_root, mode='just_route',
|
|
length=self.hparams.data_param.dataset_length, normalized=True)
|