Files
hom_traj_gen/datasets/paired_dataset.py
2020-03-12 18:32:23 +01:00

101 lines
3.6 KiB
Python

import shelve
from pathlib import Path
from typing import Union
import torch
from torch.utils.data import Dataset, ConcatDataset
from datasets.utils import DatasetMapping
from lib.preprocessing.generator import Generator
from lib.objects.map import Map
class TrajPairDataset(Dataset):
@property
def map_shape(self):
return self.map.as_array.shape
def __init__(self, data):
super(TrajPairDataset, self).__init__()
self.alternatives = data['alternatives']
self.trajectory = data['trajectory']
self.labels = data['labels']
self.mapname = data['map']['name'][4:] if data['map']['name'].startswith('map_') else data['map']['name']
self.map = data['map']['map']
def __len__(self):
return len(self.alternatives)
def __getitem__(self, item):
return self.trajectory.vertices, self.alternatives[item].vertices, self.labels[item], self.mapname
class TrajPairData(object):
@property
def map_shapes(self):
return [dataset.map_shape for dataset in self._dataset.datasets]
@property
def map_shapes_max(self):
shapes = self.map_shapes
return map(max, zip(*shapes))
@property
def name(self):
return self.__class__.__name__
def __init__(self, data_root, map_root: Union[Path, str] = '', mapname='tate_sw', trajectories=1000, alternatives=10,
train_val_test_split=(0.6, 0.2, 0.2), rebuild=False, equal_samples=True, **_):
self.rebuild = rebuild
self.equal_samples = equal_samples
self._alternatives = alternatives
self._trajectories = trajectories
self.mapname = mapname
self.train_split, self.val_split, self.test_split = train_val_test_split
self.data_root = Path(data_root)
self.maps_root = Path(map_root) if map_root else Path() / 'res' / 'maps'
self._dataset, self._train_map, self._val_map, self._test_map = self._load_dataset()
def _build_data_on_demand(self):
map_object = Map(self.mapname).from_image(self.maps_root / f'{self.mapname}.bmp')
assert self.maps_root.exists()
dataset_file = Path(self.data_root) / f'{self.mapname}.pik'
if dataset_file.exists() and self.rebuild:
dataset_file.unlink()
if not dataset_file.exists():
generator = Generator(self.data_root, map_object)
generator.generate_n_trajectories_m_alternatives(self._trajectories, self._alternatives,
self.mapname, equal_samples=self.equal_samples)
return True
def _load_dataset(self):
assert self._build_data_on_demand()
with shelve.open(str(self.data_root / f'{self.mapname}.pik')) as d:
dataset = ConcatDataset([TrajPairDataset(d[key]) for key in d.keys() if key != 'map'])
indices = torch.randperm(len(dataset))
train_size = int(len(dataset) * self.train_split)
val_size = int(len(dataset) * self.val_split)
test_size = int(len(dataset) * self.test_split)
train_map = indices[:train_size]
val_map = indices[train_size:val_size]
test_map = indices[test_size:]
return dataset, train_map, val_map, test_map
@property
def train_dataset(self):
return DatasetMapping(self._dataset, self._train_map)
@property
def val_dataset(self):
return DatasetMapping(self._dataset, self._val_map)
@property
def test_dataset(self):
return DatasetMapping(self._dataset, self._test_map)
def get_datasets(self):
return self.train_dataset, self.val_dataset, self.test_dataset