hom_traj_gen/evaluation/classification.py
Steffen Illium 91ecf157d6 initial
2020-02-13 20:28:20 +01:00

38 lines
1019 B
Python

import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
class ROCEvaluation(object):
BINARY_PROBLEM = 2
linewidth = 2
def __init__(self, save_fig=True):
self.epoch = 0
pass
def __call__(self, prediction, label, prepare_fig=True):
# Compute ROC curve and ROC area
fpr, tpr, _ = roc_curve(prediction, label)
roc_auc = auc(fpr, tpr)
if prepare_fig:
fig = self._prepare_fig()
fig.plot(fpr, tpr, color='darkorange',
lw=2, label=f'ROC curve (area = {roc_auc})')
self._prepare_fig()
return roc_auc
def _prepare_fig(self):
fig = plt.gcf()
fig.plot([0, 1], [0, 1], color='navy', lw=self.linewidth, linestyle='--')
fig.xlim([0.0, 1.0])
fig.ylim([0.0, 1.05])
fig.xlabel('False Positive Rate')
fig.ylabel('True Positive Rate')
fig.legend(loc="lower right")
return fig