hom_traj_gen/models/generators/cnn_discriminated.py
2020-04-08 14:50:16 +02:00

111 lines
4.3 KiB
Python

import torch
from functools import reduce
from operator import mul
from torch import nn
from datasets.trajectory_dataset import TrajData
from ml_lib.evaluation.classification import ROCEvaluation
from models.generators.cnn import CNNRouteGeneratorModel
import matplotlib.pyplot as plt
class CNNRouteGeneratorDiscriminated(CNNRouteGeneratorModel):
name = 'CNNRouteGeneratorDiscriminated'
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
batch_x, label = batch_xy
generated_alternative, z, mu, logvar = self(batch_x)
map_array, trajectory = batch_x
map_stack = torch.cat((map_array, trajectory, generated_alternative), dim=1)
pred_label = self.discriminator(map_stack)
discriminated_bce_loss = self.criterion(pred_label, label.float().unsqueeze(-1))
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
kld_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
# Dimensional Resizing
kld_loss /= reduce(mul, self.in_shape)
loss = (kld_loss + discriminated_bce_loss) / 2
return dict(loss=loss, log=dict(loss=loss,
discriminated_bce_loss=discriminated_bce_loss,
kld_loss=kld_loss)
)
def _test_val_step(self, batch_xy, batch_nb, *args):
batch_x, label = batch_xy
generated_alternative, z, mu, logvar = self(batch_x)
map_array, trajectory = batch_x
map_stack = torch.cat((map_array, trajectory, generated_alternative), dim=1)
pred_label = self.discriminator(map_stack)
discriminated_bce_loss = self.criterion(pred_label, label.float().unsqueeze(-1))
return dict(discriminated_bce_loss=discriminated_bce_loss, batch_nb=batch_nb,
pred_label=pred_label, label=label, generated_alternative=generated_alternative)
def validation_step(self, *args):
return self._test_val_step(*args)
def validation_epoch_end(self, outputs: list):
return self._test_val_epoch_end(outputs)
def _test_val_epoch_end(self, outputs, test=False):
evaluation = ROCEvaluation(plot_roc=True)
pred_label = torch.cat([x['pred_label'] for x in outputs])
labels = torch.cat([x['label'] for x in outputs]).unsqueeze(1)
mean_losses = torch.stack([x['discriminated_bce_loss'] for x in outputs]).mean()
# Sci-py call ROC eval call is eval(true_label, prediction)
roc_auc, tpr, fpr = evaluation(labels.cpu().numpy(), pred_label.cpu().numpy(), )
if test:
# self.logger.log_metrics(score_dict)
self.logger.log_image(f'{self.name}_ROC-Curve', plt.gcf(), step=self.global_step)
plt.clf()
maps, trajectories, labels, val_restul_dict = self.generate_random()
from generator_eval import GeneratorVisualizer
g = GeneratorVisualizer(maps, trajectories, labels, val_restul_dict)
fig = g.draw()
self.logger.log_image(f'{self.name}_Output', fig, step=self.global_step)
plt.clf()
return dict(mean_losses=mean_losses, roc_auc=roc_auc, epoch=self.current_epoch)
def test_step(self, *args):
return self._test_val_step(*args)
def test_epoch_end(self, outputs):
return self._test_val_epoch_end(outputs, test=True)
@property
def discriminator(self):
if self._disc is None:
raise RuntimeError('Set the Discriminator first; "set_discriminator(disc_model)')
return self._disc
def set_discriminator(self, disc_model):
if self._disc is not None:
raise RuntimeError('Discriminator has already been set... What are trying to do?')
self._disc = disc_model
def __init__(self, *params):
raise NotImplementedError
super(CNNRouteGeneratorDiscriminated, self).__init__(*params, issubclassed=True)
self._disc = None
self.criterion = nn.BCELoss()
self.dataset = TrajData(self.hparams.data_param.map_root, mode='just_route', preprocessed=True,
length=self.hparams.data_param.dataset_length, normalized=True)