hom_traj_gen/main.py
2020-03-03 15:10:17 +01:00

111 lines
4.5 KiB
Python

# Imports
# =============================================================================
import os
from distutils.util import strtobool
from pathlib import Path
from argparse import ArgumentParser
import warnings
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from lib.modules.utils import LightningBaseModule
from lib.utils.config import Config
from lib.utils.logging import Logger
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
_ROOT = Path(__file__).parent
# Paramter Configuration
# =============================================================================
# Argument Parser
main_arg_parser = ArgumentParser(description="parser for fast-neural-style")
# Main Parameters
main_arg_parser.add_argument("--main_debug", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--main_eval", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--main_seed", type=int, default=69, help="")
# Data Parameters
main_arg_parser.add_argument("--data_worker", type=int, default=0, help="")
main_arg_parser.add_argument("--data_batchsize", type=int, default=100, help="")
main_arg_parser.add_argument("--data_root", type=str, default='/data/', help="")
main_arg_parser.add_argument("--data_map_root", type=str, default='/res/maps', help="")
# Transformations
main_arg_parser.add_argument("--transformations_to_tensor", type=strtobool, default=False, help="")
# Transformations
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="")
main_arg_parser.add_argument("--train_epochs", type=int, default=10, help="")
main_arg_parser.add_argument("--train_batch_size", type=int, default=512, help="")
main_arg_parser.add_argument("--train_lr", type=float, default=0.002, help="")
# Model
main_arg_parser.add_argument("--model_type", type=str, default="classifier_cnn", help="")
main_arg_parser.add_argument("--model_activation", type=str, default="relu", help="")
main_arg_parser.add_argument("--model_filters", type=str, default="[32, 16, 4]", help="")
main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
main_arg_parser.add_argument("--model_use_bias", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--model_use_norm", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--model_dropout", type=float, default=0.00, help="")
# Project
main_arg_parser.add_argument("--project_name", type=str, default='traj-gen', help="")
main_arg_parser.add_argument("--project_owner", type=str, default='si11ium', help="")
main_arg_parser.add_argument("--project_neptune_key", type=str, default=os.getenv('NEPTUNE_KEY'), help="")
# Parse it
args = main_arg_parser.parse_args()
config = Config.read_namespace(args)
# Logger
# =============================================================================
logger = Logger(config, debug=True)
# Checkpoint Callback
# =============================================================================
checkpoint_callback = ModelCheckpoint(
filepath=str(logger.log_dir / 'ckpt_weights'),
verbose=True,
period=1
)
if __name__ == "__main__":
# Model
# =============================================================================
# Init
model: LightningBaseModule = config.model_class(config.model_paramters)
model.init_weights()
# Trainer
# =============================================================================
trainer = Trainer(max_nb_epochs=config.train.epochs,
show_progress_bar=True,
weights_save_path=logger.log_dir,
gpus=[0] if torch.cuda.is_available() else None,
row_log_interval=model.data_len // 40, # TODO: Better Value / Setting
log_save_interval=model.data_len // 10, # TODO: Better Value / Setting
checkpoint_callback=checkpoint_callback,
logger=logger,
fast_dev_run=config.get('main', 'debug'),
early_stop_callback=None
)
# Train it
trainer.fit(model)
# Save the last state & all parameters
config.exp_path.mkdir(parents=True, exist_ok=True) # Todo: do i need this?
trainer.save_checkpoint(logger.log_dir / 'weights.ckpt')
model.save_to_disk(logger.log_dir)
# TODO: Eval here!