hom_traj_gen/datasets/trajectory_dataset.py
2020-03-03 15:10:17 +01:00

98 lines
3.2 KiB
Python

import shelve
from pathlib import Path
from typing import Union, List
import torch
from random import choice
from torch.utils.data import ConcatDataset, Dataset
from lib.objects.map import Map
from PIL import Image
class TrajDataset(Dataset):
@property
def map_shape(self):
return self.map.as_array.shape
def __init__(self, *args, maps_root: Union[Path, str] = '', mapname='tate_sw',
length=100000, all_in_map=True, embedding_size=None, **kwargs):
super(TrajDataset, self).__init__()
self.all_in_map = all_in_map
self.mapname = mapname if mapname.endswith('.bmp') else f'{mapname}.bmp'
self.maps_root = maps_root
self._len = length
self.map = Map(self.mapname).from_image(self.maps_root / self.mapname, embedding_size=embedding_size)
def __len__(self):
return self._len
def __getitem__(self, item):
trajectory = self.map.get_random_trajectory()
alternative = self.map.generate_alternative(trajectory)
label = choice([0, 1])
if self.all_in_map:
blank_trajectory_space = torch.zeros(self.map.shape)
blank_alternative_space = torch.zeros(self.map.shape)
for index in trajectory.vertices:
blank_trajectory_space[index] = 1
blank_alternative_space[index] = 1
map_array = torch.as_tensor(self.map.as_array).float()
label = self.map.are_homotopic(trajectory, alternative)
return torch.cat((map_array, blank_trajectory_space, blank_alternative_space)), int(label)
else:
return trajectory.vertices, alternative.vertices, label, self.mapname
class TrajData(object):
@property
def map_shapes(self):
return [dataset.map_shape for dataset in self._dataset.datasets]
@property
def map_shapes_max(self):
shapes = self.map_shapes
shape_list = list(map(max, zip(*shapes)))
if self.all_in_map:
shape_list[0] += 2
return shape_list
@property
def name(self):
return self.__class__.__name__
def __init__(self, *args, map_root: Union[Path, str] = '', length=100.000, all_in_map=True, **_):
self.all_in_map = all_in_map
self.maps_root = Path(map_root) if map_root else Path() / 'res' / 'maps'
self.length = length
self._dataset = self._load_datasets()
def _load_datasets(self):
map_files = list(self.maps_root.glob('*.bmp'))
equal_split = int(self.length // len(map_files))
# find max image size among available maps:
max_map_size = (1, ) + tuple(reversed(tuple(map(max, *[Image.open(map_file).size for map_file in map_files]))))
return ConcatDataset([TrajDataset(maps_root=self.maps_root, mapname=map_file.name, length=equal_split,
all_in_map=self.all_in_map, embedding_size=max_map_size)
for map_file in map_files])
@property
def train_dataset(self):
return self._dataset
@property
def val_dataset(self):
return self._dataset
@property
def test_dataset(self):
return self._dataset
def get_datasets(self):
return self._dataset, self._dataset, self._dataset