from abc import ABC from pathlib import Path from typing import Union import torch from torch import nn import torch.nn.functional as F import pytorch_lightning as pl from lib.modules.utils import AutoPad, Interpolate # # Sub - Modules ################### class ConvModule(nn.Module): @property def shape(self): x = torch.randn(self.in_shape).unsqueeze(0) output = self(x) return output.shape[1:] def __init__(self, in_shape, activation: nn.Module = nn.ELU, pooling_size=None, use_bias=True, use_norm=True, dropout: Union[int, float] = 0, conv_filters=64, conv_kernel=5, conv_stride=1, conv_padding=0): super(ConvModule, self).__init__() # Module Paramters self.in_shape = in_shape in_channels, height, width = in_shape[0], in_shape[1], in_shape[2] self.activation = activation() # Convolution Paramters self.padding = conv_padding self.stride = conv_stride # Modules self.dropout = nn.Dropout2d(dropout) if dropout else False self.pooling = nn.MaxPool2d(pooling_size) if pooling_size else False self.norm = nn.BatchNorm2d(in_channels, eps=1e-04, affine=False) if use_norm else False self.conv = nn.Conv2d(in_channels, conv_filters, conv_kernel, bias=use_bias, padding=self.padding, stride=self.stride ) def forward(self, x): x = self.norm(x) if self.norm else x tensor = self.conv(x) tensor = self.dropout(tensor) if self.dropout else tensor tensor = self.pooling(tensor) if self.pooling else tensor tensor = self.activation(tensor) return tensor class DeConvModule(nn.Module): @property def shape(self): x = torch.randn(self.in_shape).unsqueeze(0) output = self(x) return output.shape[1:] def __init__(self, in_shape, conv_filters=3, conv_kernel=5, conv_stride=1, conv_padding=0, dropout: Union[int, float] = 0, autopad=False, activation: Union[None, nn.Module] = nn.ReLU, interpolation_scale=None, use_bias=True, normalize=False): super(DeConvModule, self).__init__() in_channels, height, width = in_shape[0], in_shape[1], in_shape[2] self.padding = conv_padding self.stride = conv_stride self.in_shape = in_shape self.conv_filters = conv_filters self.autopad = AutoPad() if autopad else False self.interpolation = Interpolate(scale_factor=interpolation_scale) if interpolation_scale else False self.norm = nn.BatchNorm2d(in_channels, eps=1e-04, affine=False) if normalize else False self.dropout = nn.Dropout2d(dropout) if dropout else False self.de_conv = nn.ConvTranspose2d(in_channels, self.conv_filters, conv_kernel, bias=use_bias, padding=self.padding, stride=self.stride) self.activation = activation() if activation else None def forward(self, x): x = self.norm(x) if self.norm else x x = self.dropout(x) if self.dropout else x x = self.autopad(x) if self.autopad else x x = self.interpolation(x) if self.interpolation else x tensor = self.de_conv(x) tensor = self.activation(tensor) if self.activation else tensor return tensor def size(self): return self.shape class RecurrentModule(nn.Module): @property def shape(self): x = torch.randn(self.in_shape).unsqueeze(0) output = self(x) return output.shape[1:] def __init__(self, in_shape, hidden_size, num_layers=1, cell_type=nn.GRU, use_bias=True, dropout=0): super(RecurrentModule, self).__init__() self.use_bias = use_bias self.num_layers = num_layers self.in_shape = in_shape self.hidden_size = hidden_size self.dropout = dropout self.rnn = cell_type(self.in_shape[-1] * self.in_shape[-2], hidden_size, num_layers=num_layers, bias=self.use_bias, batch_first=True, dropout=self.dropout) def forward(self, x): tensor = self.rnn(x) return tensor