from functools import reduce from operator import mul import torch from torch import nn import torch.nn.functional as F from torch.optim import Adam from datasets.trajectory_dataset import TrajData from lib.modules.utils import LightningBaseModule, Flatten from lib.modules.blocks import ConvModule, ResidualModule class ConvHomDetector(LightningBaseModule): name = 'CNNHomotopyClassifier' def configure_optimizers(self): return Adam(self.parameters(), lr=self.hparams.lr) def training_step(self, batch_xy, batch_nb, *args, **kwargs): batch_x, batch_y = batch_xy pred_y = self(batch_x) loss = F.binary_cross_entropy(pred_y, batch_y.float()) return {'loss': loss, 'log': dict(loss=loss)} def __init__(self, *params): super(ConvHomDetector, self).__init__(*params) # Dataset self.dataset = TrajData(self.hparams.data_param.root) # Additional Attributes self.map_shape = self.dataset.map_shapes_max # Model Paramters self.in_shape = self.dataset.map_shapes_max assert len(self.in_shape) == 3, f'Image or map shape has to have 3 dims, but had: {len(self.in_shape)}' # NN Nodes # ============================ # Convolutional Map Processing # self.map_conv_0 = ConvModule(self.in_shape, conv_kernel=3, conv_stride=1, conv_padding=0, conv_filters=self.hparams.model_param.filters[0]) self.map_res_1 = ResidualModule(self.map_conv_0.shape, ConvModule, 3, **dict(conv_kernel=3, conv_stride=1, conv_padding=1, conv_filters=self.hparams.model_param.filters[0])) self.map_conv_1 = ConvModule(self.map_res_1.shape, conv_kernel=5, conv_stride=1, conv_padding=0, conv_filters=self.hparams.model_param.filters[0]) self.map_res_2 = ResidualModule(self.map_conv_1.shape, ConvModule, 3, **dict(conv_kernel=3, conv_stride=1, conv_padding=1, conv_filters=self.hparams.model_param.filters[0])) self.map_conv_2 = ConvModule(self.map_res_2.shape, conv_kernel=5, conv_stride=1, conv_padding=0, conv_filters=self.hparams.model_param.filters[0]) self.map_res_3 = ResidualModule(self.map_conv_2.shape, ConvModule, 3, **dict(conv_kernel=3, conv_stride=1, conv_padding=1, conv_filters=self.hparams.model_param.filters[0])) self.map_conv_3 = ConvModule(self.map_res_3.shape, conv_kernel=5, conv_stride=1, conv_padding=0, conv_filters=self.hparams.model_param.filters[0]) self.flatten = Flatten(self.map_conv_3.shape) # ============================ # Classifier # self.linear = nn.Linear(reduce(mul, self.flatten.shape), self.hparams.model_param.classes * 10) # Comments on Multi Class labels self.classifier = nn.Linear(self.hparams.model_param.classes * 10, 1) # self.hparams.model_param.classes) self.out_activation = nn.Sigmoid() # nn.Softmax def forward(self, x): tensor = self.map_conv_0(x) tensor = self.map_res_1(tensor) tensor = self.map_conv_1(tensor) tensor = self.map_res_2(tensor) tensor = self.map_conv_2(tensor) tensor = self.map_conv_3(tensor) tensor = self.flatten(tensor) tensor = self.linear(tensor) tensor = self.classifier(tensor) tensor = self.out_activation(tensor) return tensor