# Imports # ============================================================================= import os from distutils.util import strtobool from pathlib import Path from argparse import ArgumentParser, Namespace import warnings import torch from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping from torch.utils.data import DataLoader from lib.modules.utils import LightningBaseModule from lib.utils.config import Config from lib.utils.logging import Logger from lib.evaluation.classification import ROCEvaluation warnings.filterwarnings('ignore', category=FutureWarning) warnings.filterwarnings('ignore', category=UserWarning) _ROOT = Path(__file__).parent # Paramter Configuration # ============================================================================= # Argument Parser main_arg_parser = ArgumentParser(description="parser for fast-neural-style") # Main Parameters main_arg_parser.add_argument("--main_debug", type=strtobool, default=False, help="") main_arg_parser.add_argument("--main_eval", type=strtobool, default=False, help="") main_arg_parser.add_argument("--main_seed", type=int, default=69, help="") # Data Parameters main_arg_parser.add_argument("--data_worker", type=int, default=10, help="") main_arg_parser.add_argument("--data_batchsize", type=int, default=100, help="") main_arg_parser.add_argument("--data_root", type=str, default='/data/', help="") main_arg_parser.add_argument("--data_map_root", type=str, default='/res/maps', help="") # Transformations main_arg_parser.add_argument("--transformations_to_tensor", type=strtobool, default=False, help="") # Transformations main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="") main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="") main_arg_parser.add_argument("--train_epochs", type=int, default=10, help="") main_arg_parser.add_argument("--train_batch_size", type=int, default=256, help="") main_arg_parser.add_argument("--train_lr", type=float, default=0.002, help="") # Model main_arg_parser.add_argument("--model_type", type=str, default="classifier_cnn", help="") main_arg_parser.add_argument("--model_activation", type=str, default="relu", help="") main_arg_parser.add_argument("--model_filters", type=str, default="[32, 16, 4]", help="") main_arg_parser.add_argument("--model_classes", type=int, default=2, help="") main_arg_parser.add_argument("--model_use_bias", type=strtobool, default=True, help="") main_arg_parser.add_argument("--model_use_norm", type=strtobool, default=True, help="") main_arg_parser.add_argument("--model_dropout", type=float, default=0.00, help="") # Project main_arg_parser.add_argument("--project_name", type=str, default='traj-gen', help="") main_arg_parser.add_argument("--project_owner", type=str, default='si11ium', help="") main_arg_parser.add_argument("--project_neptune_key", type=str, default=os.getenv('NEPTUNE_KEY'), help="") # Parse it args: Namespace = main_arg_parser.parse_args() def run_lightning_loop(config_obj): # Logging # ================================================================================ # Logger with Logger(config_obj) as logger: # Callbacks # ============================================================================= # Checkpoint Saving checkpoint_callback = ModelCheckpoint( filepath=str(logger.log_dir / 'ckpt_weights'), verbose=True, save_top_k=5, ) # ============================================================================= # Early Stopping # TODO: For This to work, one must set a validation step and End Eval and Score early_stopping_callback = EarlyStopping( monitor='val_loss', min_delta=0.0, patience=0, ) # Model # ============================================================================= # Init model: LightningBaseModule = config_obj.model_class(config_obj.model_paramters) model.init_weights() # Trainer # ============================================================================= trainer = Trainer(max_epochs=config_obj.train.epochs, show_progress_bar=True, weights_save_path=logger.log_dir, gpus=[0] if torch.cuda.is_available() else None, row_log_interval=(model.data_len * 0.01), # TODO: Better Value / Setting log_save_interval=(model.data_len * 0.04), # TODO: Better Value / Setting checkpoint_callback=checkpoint_callback, logger=logger, fast_dev_run=config_obj.main.debug, early_stop_callback=None ) # Train It trainer.fit(model,) # Save the last state & all parameters trainer.save_checkpoint(logger.log_dir / 'weights.ckpt') model.save_to_disk(logger.log_dir) # Evaluate It trainer.test() return model if __name__ == "__main__": config = Config.read_namespace(args) trained_model = run_lightning_loop(config)