# Imports # ============================================================================= import os from distutils.util import strtobool from pathlib import Path from argparse import ArgumentParser import warnings from pytorch_lightning import Trainer from torch.utils.data import DataLoader from dataset.dataset import TrajData from lib.utils.config import Config from lib.utils.logging import Logger warnings.filterwarnings('ignore', category=FutureWarning) warnings.filterwarnings('ignore', category=UserWarning) _ROOT = Path(__file__).parent # Paramter Configuration # ============================================================================= # Argument Parser main_arg_parser = ArgumentParser(description="parser for fast-neural-style") # Main Parameters main_arg_parser.add_argument("--main_debug", type=strtobool, default=False, help="") main_arg_parser.add_argument("--main_eval", type=strtobool, default=False, help="") main_arg_parser.add_argument("--main_seed", type=int, default=69, help="") # Data Parameters main_arg_parser.add_argument("--data_worker", type=int, default=10, help="") main_arg_parser.add_argument("--data_batchsize", type=int, default=100, help="") main_arg_parser.add_argument("--data_root", type=str, default='../data/rpoot', help="") # Transformations main_arg_parser.add_argument("--transformations_to_tensor", type=strtobool, default=False, help="") # Transformations main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="") main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="") main_arg_parser.add_argument("--train_epochs", type=int, default=10, help="") main_arg_parser.add_argument("--train_batch_size", type=int, default=512, help="") main_arg_parser.add_argument("--train_lr", type=float, default=0.002, help="") # Model main_arg_parser.add_argument("--model_type", type=str, default="LeNetAE", help="") main_arg_parser.add_argument("--model_activation", type=str, default="relu", help="") main_arg_parser.add_argument("--model_filters", type=str, default="[32, 16, 4]", help="") main_arg_parser.add_argument("--model_use_bias", type=strtobool, default=True, help="") main_arg_parser.add_argument("--model_use_norm", type=strtobool, default=True, help="") main_arg_parser.add_argument("--model_dropout", type=float, default=0.00, help="") # Project main_arg_parser.add_argument("--project_name", type=str, default='traj-gen', help="") main_arg_parser.add_argument("--project_owner", type=str, default='si11ium', help="") main_arg_parser.add_argument("--project_neptune_key", type=str, default=os.getenv('NEPTUNE_KEY'), help="") # Parse it args = main_arg_parser.parse_args() config = Config.read_namespace(args) ################ # TESTING ONLY # # ============================================================================= hparams = config.model_paramters dataset = TrajData('data', mapname='tate', alternatives=100, trajectories=10000) dataloader = DataLoader(dataset=dataset.train_dataset, shuffle=True, batch_size=hparams.data_param.batchsize, num_workers=hparams.data_param.worker) # Logger # ============================================================================= logger = Logger(config, debug=True) # Trainer # ============================================================================= trainer = Trainer(logger=logger) # Model # ============================================================================= model = None if __name__ == '__main__': next(iter(dataloader)) pass