project Refactor, CNN Classifier Basics
This commit is contained in:
@ -3,6 +3,7 @@ from pathlib import Path
|
||||
from typing import Union, List
|
||||
|
||||
import torch
|
||||
from random import choice
|
||||
from torch.utils.data import ConcatDataset, Dataset
|
||||
|
||||
from lib.objects.map import Map
|
||||
@ -16,10 +17,11 @@ class TrajDataset(Dataset):
|
||||
return self.map.as_array.shape
|
||||
|
||||
def __init__(self, *args, maps_root: Union[Path, str] = '', mapname='tate_sw',
|
||||
length=100000, all_in_map=True, embedding_size=None, preserve_equal_samples=False, **kwargs):
|
||||
length=100000, mode='separated_arrays', embedding_size=None, preserve_equal_samples=False, **kwargs):
|
||||
super(TrajDataset, self).__init__()
|
||||
assert mode.lower() in ['vectors', 'all_in_map', 'separated_arrays', 'just_route']
|
||||
self.preserve_equal_samples = preserve_equal_samples
|
||||
self.all_in_map = all_in_map
|
||||
self.mode = mode
|
||||
self.mapname = mapname if mapname.endswith('.bmp') else f'{mapname}.bmp'
|
||||
self.maps_root = maps_root
|
||||
self._len = length
|
||||
@ -31,8 +33,19 @@ class TrajDataset(Dataset):
|
||||
return self._len
|
||||
|
||||
def __getitem__(self, item):
|
||||
trajectory = self.map.get_random_trajectory()
|
||||
|
||||
if self.mode.lower() == 'just_route':
|
||||
trajectory = self.map.get_random_trajectory()
|
||||
label = choice([0, 1])
|
||||
blank_trajectory_space = torch.zeros(self.map.shape)
|
||||
for index in trajectory.vertices:
|
||||
blank_trajectory_space[index] = 1
|
||||
|
||||
map_array = torch.as_tensor(self.map.as_array).float()
|
||||
return (map_array, blank_trajectory_space), label
|
||||
|
||||
while True:
|
||||
trajectory = self.map.get_random_trajectory()
|
||||
# TODO: Sanity Check this while true loop...
|
||||
alternative = self.map.generate_alternative(trajectory)
|
||||
label = self.map.are_homotopic(trajectory, alternative)
|
||||
@ -42,18 +55,26 @@ class TrajDataset(Dataset):
|
||||
break
|
||||
|
||||
self.last_label = label
|
||||
if self.all_in_map:
|
||||
if self.mode.lower() in ['all_in_map', 'separated_arrays']:
|
||||
blank_trajectory_space = torch.zeros(self.map.shape)
|
||||
blank_alternative_space = torch.zeros(self.map.shape)
|
||||
for index in trajectory.vertices:
|
||||
blank_trajectory_space[index] = 1
|
||||
for index in alternative.vertices:
|
||||
blank_alternative_space[index] = 1
|
||||
|
||||
map_array = torch.as_tensor(self.map.as_array).float()
|
||||
return torch.cat((map_array, blank_trajectory_space, blank_alternative_space)), int(label)
|
||||
else:
|
||||
if self.mode == 'separated_arrays':
|
||||
return (map_array, blank_trajectory_space, int(label)), blank_alternative_space
|
||||
else:
|
||||
return torch.cat((map_array, blank_trajectory_space, blank_alternative_space)), int(label)
|
||||
|
||||
elif self.mode == 'vectors':
|
||||
return trajectory.vertices, alternative.vertices, label, self.mapname
|
||||
|
||||
else:
|
||||
raise ValueError
|
||||
|
||||
|
||||
class TrajData(object):
|
||||
@property
|
||||
@ -64,7 +85,7 @@ class TrajData(object):
|
||||
def map_shapes_max(self):
|
||||
shapes = self.map_shapes
|
||||
shape_list = list(map(max, zip(*shapes)))
|
||||
if self.all_in_map:
|
||||
if self.mode == 'all_in_map':
|
||||
shape_list[0] += 2
|
||||
return shape_list
|
||||
|
||||
@ -72,10 +93,10 @@ class TrajData(object):
|
||||
def name(self):
|
||||
return self.__class__.__name__
|
||||
|
||||
def __init__(self, *args, map_root: Union[Path, str] = '', length=100.000, all_in_map=True, **_):
|
||||
def __init__(self, map_root, length=100000, mode='separated_arrays', **_):
|
||||
|
||||
self.all_in_map = all_in_map
|
||||
self.maps_root = Path(map_root) if map_root else Path() / 'res' / 'maps'
|
||||
self.mode = mode
|
||||
self.maps_root = Path(map_root)
|
||||
self.length = length
|
||||
self._dataset = self._load_datasets()
|
||||
|
||||
@ -86,8 +107,8 @@ class TrajData(object):
|
||||
# find max image size among available maps:
|
||||
max_map_size = (1, ) + tuple(reversed(tuple(map(max, *[Image.open(map_file).size for map_file in map_files]))))
|
||||
return ConcatDataset([TrajDataset(maps_root=self.maps_root, mapname=map_file.name, length=equal_split,
|
||||
all_in_map=self.all_in_map, embedding_size=max_map_size,
|
||||
preserve_equal_samples=False)
|
||||
mode=self.mode, embedding_size=max_map_size,
|
||||
preserve_equal_samples=True)
|
||||
for map_file in map_files])
|
||||
|
||||
@property
|
||||
|
Reference in New Issue
Block a user