Debugging Validation and testing

This commit is contained in:
Si11ium 2020-03-09 19:18:22 +01:00
parent 4ae333fe5d
commit 6b9696c98e
14 changed files with 28 additions and 116 deletions

2
.idea/.gitignore generated vendored
View File

@ -1,2 +0,0 @@
# Default ignored files
/workspace.xml

22
.idea/deployment.xml generated
View File

@ -1,22 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="PublishConfigData" autoUpload="On explicit save action" serverName="steffen@aimachine:22" showAutoUploadSettingsWarning="false">
<serverData>
<paths name="erlowa@aimachine">
<serverdata>
<mappings>
<mapping deploy="/" local="$PROJECT_DIR$" web="/" />
</mappings>
</serverdata>
</paths>
<paths name="steffen@aimachine:22">
<serverdata>
<mappings>
<mapping deploy="/" local="$PROJECT_DIR$" web="/" />
</mappings>
</serverdata>
</paths>
</serverData>
<option name="myAutoUpload" value="ON_EXPLICIT_SAVE" />
</component>
</project>

View File

@ -1,23 +0,0 @@
<component name="ProjectDictionaryState">
<dictionary name="steffen">
<words>
<w>autopad</w>
<w>conv</w>
<w>convolutional</w>
<w>dataloader</w>
<w>dataloaders</w>
<w>datasets</w>
<w>homotopic</w>
<w>hparams</w>
<w>hyperparamter</w>
<w>kingma</w>
<w>logvar</w>
<w>mapname</w>
<w>mapnames</w>
<w>numlayers</w>
<w>reparameterize</w>
<w>softmax</w>
<w>traj</w>
</words>
</dictionary>
</component>

View File

@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="Remote Python 3.7.6 (sftp://steffen@aimachine:22/home/steffen/envs/traj_gen/bin/python)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

View File

@ -1,7 +0,0 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="PROJECT_PROFILE" value="Default" />
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

10
.idea/misc.xml generated
View File

@ -1,10 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="JavaScriptSettings">
<option name="languageLevel" value="ES6" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="traj_gen@ai-machine" project-jdk-type="Python SDK" />
<component name="PyPackaging">
<option name="earlyReleasesAsUpgrades" value="true" />
</component>
</project>

8
.idea/modules.xml generated
View File

@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/hom_traj_gen.iml" filepath="$PROJECT_DIR$/.idea/hom_traj_gen.iml" />
</modules>
</component>
</project>

6
.idea/vcs.xml generated
View File

@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

15
.idea/webResources.xml generated
View File

@ -1,15 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="WebResourcesPaths">
<contentEntries>
<entry url="file://$PROJECT_DIR$">
<entryData>
<resourceRoots>
<path value="file://$PROJECT_DIR$/res" />
<path value="file://$PROJECT_DIR$/data" />
</resourceRoots>
</entryData>
</entry>
</contentEntries>
</component>
</project>

View File

@ -1,3 +1,5 @@
from statistics import mean
from random import choice
import torch
@ -65,13 +67,12 @@ class CNNRouteGeneratorModel(LightningBaseModule):
def validation_epoch_end(self, outputs):
evaluation = ROCEvaluation(plot_roc=True)
predictions = torch.cat([x['prediction'] for x in outputs])
pred_label = torch.cat([x['pred_label'] for x in outputs])
labels = torch.cat([x['label'] for x in outputs]).unsqueeze(1)
losses = torch.cat([x['discriminated_bce_loss'] for x in outputs]).unsqueeze(1)
mean_losses = losses.mean()
mean_losses = torch.stack([x['discriminated_bce_loss'] for x in outputs]).mean()
# Sci-py call ROC eval call is eval(true_label, prediction)
roc_auc, tpr, fpr = evaluation(labels.cpu().numpy(), predictions.cpu().numpy(), )
roc_auc, tpr, fpr = evaluation(labels.cpu().numpy(), pred_label.cpu().numpy(), )
# self.logger.log_metrics(score_dict)
self.logger.log_image(f'{self.name}_ROC-Curve_E{self.current_epoch}', plt.gcf())
plt.clf()
@ -103,7 +104,7 @@ class CNNRouteGeneratorModel(LightningBaseModule):
# Dataset
self.dataset = TrajData(self.hparams.data_param.map_root, mode='just_route',
length=self.hparams.train_param.batch_size * 1000)
length=self.hparams.data_param.dataset_length)
# Additional Attributes
self.in_shape = self.dataset.map_shapes_max
@ -159,6 +160,10 @@ class CNNRouteGeneratorModel(LightningBaseModule):
self.traj_lin = nn.Linear(reduce(mul, self.traj_conv_3.shape), self.feature_dim)
#
# Mixed Encoder
self.mixed_lin = nn.Linear(self.lat_dim, self.lat_dim)
#
# Variational Bottleneck
self.mu = nn.Linear(self.lat_dim, self.hparams.model_param.lat_dim)
@ -242,7 +247,7 @@ class CNNRouteGeneratorModel(LightningBaseModule):
return z, mu, logvar
def generate_random(self, n=6):
maps = [self.map_storage[choice(self.map_storage.keys())] for _ in range(n)]
maps = [self.map_storage[choice(self.map_storage.keys)] for _ in range(n)]
trajectories = torch.stack([x.get_random_trajectory() for x in maps] * 2)
maps = torch.stack([x.as_2d_array for x in maps] * 2)
labels = torch.as_tensor([0] * n + [1] * n)

View File

@ -57,7 +57,8 @@ class ConvHomDetector(LightningBaseModule):
# Model Parameters
self.in_shape = self.dataset.map_shapes_max
assert len(self.in_shape) == 3, f'Image or map shape has to have 3 dims, but had: {len(self.in_shape)}'
self.criterion = nn.BCEWithLogitsLoss()
self.criterion = nn.BCELoss()
self.sigmoid = nn.Sigmoid()
# NN Nodes
# ============================
@ -100,4 +101,5 @@ class ConvHomDetector(LightningBaseModule):
tensor = self.flatten(tensor)
tensor = self.linear(tensor)
tensor = self.classifier(tensor)
tensor = self.sigmoid(tensor)
return tensor

View File

@ -90,7 +90,7 @@ class LightningBaseModule(pl.LightningModule, ABC):
# Data loading
# =============================================================================
# Map Object
self.map_storage = MapStorage(self.hparams.data_param.map_root)
self.map_storage = MapStorage(self.hparams.data_param.map_root, load_all=True)
def size(self):
return self.shape
@ -143,19 +143,19 @@ class LightningBaseModule(pl.LightningModule, ABC):
# Train Dataloader
def train_dataloader(self):
return DataLoader(dataset=self.dataset.train_dataset, shuffle=True,
batch_size=self.hparams.data_param.batchsize,
batch_size=self.hparams.train_param.batch_size,
num_workers=self.hparams.data_param.worker)
# Test Dataloader
def test_dataloader(self):
return DataLoader(dataset=self.dataset.test_dataset, shuffle=True,
batch_size=self.hparams.data_param.batchsize,
batch_size=self.hparams.train_param.batch_size,
num_workers=self.hparams.data_param.worker)
# Validation Dataloader
def val_dataloader(self):
return DataLoader(dataset=self.dataset.val_dataset, shuffle=False,
batch_size=self.hparams.data_param.batchsize,
batch_size=self.hparams.train_param.batch_size,
num_workers=self.hparams.data_param.worker)

View File

@ -167,6 +167,10 @@ class Map(object):
class MapStorage(object):
@property
def keys(self):
return list(self.data.keys())
def __init__(self, map_root, load_all=False):
self.data = dict()
self.map_root = Path(map_root)
@ -175,11 +179,11 @@ class MapStorage(object):
_ = self[map_file.name]
def __getitem__(self, item):
if item in hasattr(self, item):
return self.__getattribute__(item)
if item in self.data.keys():
return self.data.get(item)
else:
with shelve.open(self.map_root / f'{item}.pik', flag='r') as d:
self.__setattr__(item, d['map']['map'])
current_map = Map().from_image(self.map_root / item)
self.data.__setitem__(item, np.asarray(current_map))
return self[item]

View File

@ -33,6 +33,7 @@ main_arg_parser.add_argument("--main_seed", type=int, default=69, help="")
# Data Parameters
main_arg_parser.add_argument("--data_worker", type=int, default=10, help="")
main_arg_parser.add_argument("--data_dataset_length", type=int, default=10000, help="")
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
main_arg_parser.add_argument("--data_map_root", type=str, default='res/shapes', help="")
@ -105,6 +106,7 @@ def run_lightning_loop(config_obj):
show_progress_bar=True,
weights_save_path=logger.log_dir,
gpus=[0] if torch.cuda.is_available() else None,
check_val_every_n_epoch=1,
# row_log_interval=(model.n_train_batches * 0.1), # TODO: Better Value / Setting
# log_save_interval=(model.n_train_batches * 0.2), # TODO: Better Value / Setting
checkpoint_callback=checkpoint_callback,