CNN Model Body
This commit is contained in:
@ -1,121 +1,124 @@
|
||||
import multiprocessing as mp
|
||||
import pickle
|
||||
import shelve
|
||||
from collections import defaultdict
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
from tqdm import trange
|
||||
|
||||
from lib.objects.map import Map
|
||||
|
||||
|
||||
class Generator:
|
||||
|
||||
possible_modes = ['one_patching']
|
||||
|
||||
def __init__(self, data_root, map_obj, binary=True):
|
||||
self.binary: bool = binary
|
||||
self.map: Map = map_obj
|
||||
|
||||
self.data_root = Path(data_root)
|
||||
|
||||
def generate_n_trajectories_m_alternatives(self, n, m, dataset_name='', **kwargs):
|
||||
trajectories_with_alternatives = list()
|
||||
for _ in trange(n, desc='Processing Trajectories'):
|
||||
trajectory = self.map.get_random_trajectory()
|
||||
alternatives, labels = self.generate_n_alternatives(trajectory, m, dataset_name=dataset_name, **kwargs)
|
||||
trajectories_with_alternatives.append(dict(trajectory=trajectory, alternatives=alternatives, labels=labels))
|
||||
return trajectories_with_alternatives
|
||||
|
||||
def generate_alternatives(self, trajectory, output: Union[mp.
|
||||
Queue, None] = None, mode='one_patching'):
|
||||
start, dest = trajectory.endpoints
|
||||
if mode == 'one_patching':
|
||||
patch = self.map.get_valid_position()
|
||||
alternative = self.map.get_trajectory_from_vertices(start, patch, dest)
|
||||
else:
|
||||
raise RuntimeError(f'mode checking went wrong...')
|
||||
|
||||
if output:
|
||||
output.put(alternative)
|
||||
return alternative
|
||||
|
||||
def generate_n_alternatives(self, trajectory, n, dataset_name: Union[str, Path] = '',
|
||||
mode='one_patching', equal_samples=True):
|
||||
assert mode in self.possible_modes, f'Parameter "mode" must be either {self.possible_modes}, but was {mode}.'
|
||||
# Define an output queue
|
||||
output = mp.Queue()
|
||||
# Setup a list of processes that we want to run
|
||||
processes = [mp.Process(target=self.generate_alternatives,
|
||||
kwargs=dict(trajectory=trajectory, output=output, mode=mode))
|
||||
for _ in range(n)]
|
||||
# Run processes
|
||||
for p in processes:
|
||||
p.start()
|
||||
# Exit the completed processes
|
||||
for p in processes:
|
||||
p.join()
|
||||
# Get process results from the output queue
|
||||
results = [output.get() for _ in processes]
|
||||
|
||||
# label per homotopic class
|
||||
homotopy_classes = defaultdict(list)
|
||||
homotopy_classes[0].append(trajectory)
|
||||
for i in range(len(results)):
|
||||
alternative = results[i]
|
||||
class_not_found, label = True, None
|
||||
# check for homotopy class
|
||||
for label in homotopy_classes.keys():
|
||||
if self.map.are_homotopic(homotopy_classes[label][0], alternative):
|
||||
homotopy_classes[label].append(alternative)
|
||||
class_not_found = False
|
||||
break
|
||||
if class_not_found:
|
||||
label = len(homotopy_classes)
|
||||
homotopy_classes[label].append(alternative)
|
||||
|
||||
# There should be as much homotopic samples as non-homotopic samples
|
||||
if equal_samples:
|
||||
homotopy_classes = self._remove_unequal(homotopy_classes)
|
||||
|
||||
# Compose lists of alternatives with labels
|
||||
alternatives, labels = list(), list()
|
||||
for key in homotopy_classes.keys():
|
||||
alternatives.extend([homotopy_classes[key]])
|
||||
labels.extend([key] * len(homotopy_classes[key]))
|
||||
|
||||
# Write to disk
|
||||
if dataset_name:
|
||||
self.write_to_disk(dataset_name, trajectory, alternatives, labels)
|
||||
|
||||
# Return
|
||||
return alternatives, labels
|
||||
|
||||
def write_to_disk(self, filepath, trajectory, alternatives, labels):
|
||||
dataset_name = filepath if filepath.endswith('.pik') else f'{filepath}.pik'
|
||||
self.data_root.mkdir(exist_ok=True, parents=True)
|
||||
with shelve.open(str(self.data_root / dataset_name), protocol=pickle.HIGHEST_PROTOCOL) as f:
|
||||
new_key = len(f)
|
||||
f[f'trajectory_{new_key}'] = dict(alternatives=alternatives,
|
||||
trajectory=trajectory,
|
||||
labels=labels)
|
||||
if 'map' not in f:
|
||||
f['map'] = dict(map=self.map, name=f'map_{self.map.name}')
|
||||
|
||||
@staticmethod
|
||||
def _remove_unequal(hom_dict):
|
||||
hom_dict = hom_dict.copy()
|
||||
|
||||
counter = len(hom_dict)
|
||||
while sum([len(hom_dict[class_id]) for class_id in range(len(hom_dict))]) > len(hom_dict[0]):
|
||||
if counter > len(hom_dict):
|
||||
counter = len(hom_dict)
|
||||
if counter in hom_dict:
|
||||
if len(hom_dict[counter]) == 0:
|
||||
del hom_dict[counter]
|
||||
else:
|
||||
del hom_dict[counter][-1]
|
||||
counter -= 1
|
||||
return hom_dict
|
||||
import multiprocessing as mp
|
||||
import pickle
|
||||
import shelve
|
||||
from collections import defaultdict
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
from tqdm import trange
|
||||
|
||||
from lib.objects.map import Map
|
||||
from lib.utils.parallel import run_n_in_parallel
|
||||
|
||||
class Generator:
|
||||
|
||||
possible_modes = ['one_patching']
|
||||
|
||||
def __init__(self, data_root, map_obj, binary=True):
|
||||
self.binary: bool = binary
|
||||
self.map: Map = map_obj
|
||||
|
||||
self.data_root = Path(data_root)
|
||||
|
||||
def generate_n_trajectories_m_alternatives(self, n, m, dataset_name='', **kwargs):
|
||||
trajectories_with_alternatives = list()
|
||||
for _ in trange(n, desc='Processing Trajectories'):
|
||||
trajectory = self.map.get_random_trajectory()
|
||||
alternatives, labels = self.generate_n_alternatives(trajectory, m, dataset_name=dataset_name, **kwargs)
|
||||
if not alternatives or labels:
|
||||
continue
|
||||
else:
|
||||
trajectories_with_alternatives.append(
|
||||
dict(trajectory=trajectory, alternatives=alternatives, labels=labels)
|
||||
)
|
||||
return trajectories_with_alternatives
|
||||
|
||||
def generate_alternatives(self, trajectory, output: Union[mp.
|
||||
Queue, None] = None, mode='one_patching'):
|
||||
start, dest = trajectory.endpoints
|
||||
if mode == 'one_patching':
|
||||
patch = self.map.get_valid_position()
|
||||
alternative = self.map.get_trajectory_from_vertices(start, patch, dest)
|
||||
else:
|
||||
raise RuntimeError(f'mode checking went wrong...')
|
||||
|
||||
if output:
|
||||
output.put(alternative)
|
||||
return alternative
|
||||
|
||||
def generate_n_alternatives(self, trajectory, n, dataset_name: Union[str, Path] = '',
|
||||
mode='one_patching', equal_samples=True, binary_check=True):
|
||||
assert mode in self.possible_modes, f'Parameter "mode" must be either {self.possible_modes}, but was {mode}.'
|
||||
# Define an output queue
|
||||
#output = mp.Queue()
|
||||
|
||||
results = run_n_in_parallel(self.generate_alternatives, n, trajectory=trajectory, mode=mode) # , output=output)
|
||||
|
||||
# Get process results from the output queue
|
||||
#results = [output.get() for _ in range(n)]
|
||||
|
||||
# label per homotopic class
|
||||
homotopy_classes = defaultdict(list)
|
||||
homotopy_classes[0].append(trajectory)
|
||||
for i in range(len(results)):
|
||||
alternative = results[i]
|
||||
class_not_found = True
|
||||
# check for homotopy class
|
||||
for label in homotopy_classes.keys():
|
||||
if self.map.are_homotopic(homotopy_classes[label][0], alternative):
|
||||
homotopy_classes[label].append(alternative)
|
||||
class_not_found = False
|
||||
break
|
||||
if class_not_found:
|
||||
label = 1 if binary_check else len(homotopy_classes)
|
||||
homotopy_classes[label].append(alternative)
|
||||
|
||||
# There should be as much homotopic samples as non-homotopic samples
|
||||
if equal_samples:
|
||||
homotopy_classes = self._remove_unequal(homotopy_classes)
|
||||
if not homotopy_classes:
|
||||
return None, None
|
||||
|
||||
# Compose lists of alternatives with labels
|
||||
alternatives, labels = list(), list()
|
||||
for key in homotopy_classes.keys():
|
||||
alternatives.extend(homotopy_classes[key])
|
||||
labels.extend([key] * len(homotopy_classes[key]))
|
||||
|
||||
# Write to disk
|
||||
if dataset_name:
|
||||
self.write_to_disk(dataset_name, trajectory, alternatives, labels)
|
||||
|
||||
# Return
|
||||
return alternatives, labels
|
||||
|
||||
def write_to_disk(self, filepath, trajectory, alternatives, labels):
|
||||
dataset_name = filepath if filepath.endswith('.pik') else f'{filepath}.pik'
|
||||
self.data_root.mkdir(exist_ok=True, parents=True)
|
||||
with shelve.open(str(self.data_root / dataset_name), protocol=pickle.HIGHEST_PROTOCOL) as f:
|
||||
new_key = len(f)
|
||||
f[f'trajectory_{new_key}'] = dict(alternatives=alternatives,
|
||||
trajectory=trajectory,
|
||||
labels=labels)
|
||||
if 'map' not in f:
|
||||
f['map'] = dict(map=self.map, name=f'map_{self.map.name}')
|
||||
|
||||
@staticmethod
|
||||
def _remove_unequal(hom_dict):
|
||||
# We argue, that there will always be more non-homotopic routes than homotopic alternatives.
|
||||
# TODO: Otherwise introduce a second condition / loop
|
||||
hom_dict = hom_dict.copy()
|
||||
if len(hom_dict[0]) <= 1:
|
||||
return None
|
||||
counter = len(hom_dict)
|
||||
while sum([len(hom_dict[class_id]) for class_id in range(1, len(hom_dict))]) > len(hom_dict[0]):
|
||||
if counter == 0:
|
||||
counter = len(hom_dict)
|
||||
if counter in hom_dict:
|
||||
if len(hom_dict[counter]) == 0:
|
||||
del hom_dict[counter]
|
||||
else:
|
||||
del hom_dict[counter][-1]
|
||||
counter -= 1
|
||||
return hom_dict
|
||||
|
Reference in New Issue
Block a user