fig clf inserted and not resize on kld
1
.gitignore
vendored
@ -3,6 +3,7 @@
|
|||||||
|
|
||||||
# User-specific stuff
|
# User-specific stuff
|
||||||
.idea/**
|
.idea/**
|
||||||
|
res/**
|
||||||
|
|
||||||
# CMake
|
# CMake
|
||||||
cmake-build-*/
|
cmake-build-*/
|
||||||
|
29
datasets/mnist.py
Normal file
@ -0,0 +1,29 @@
|
|||||||
|
from torchvision.datasets import MNIST
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class MyMNIST(MNIST):
|
||||||
|
|
||||||
|
@property
|
||||||
|
def map_shapes_max(self):
|
||||||
|
return np.asarray(self.test_dataset[0][0]).shape
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super(MyMNIST, self).__init__('res', train=False, download=True)
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __getitem__(self, item):
|
||||||
|
image = super(MyMNIST, self).__getitem__(item)
|
||||||
|
return np.expand_dims(np.asarray(image[0]), axis=0).astype(np.float32), image[1]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def train_dataset(self):
|
||||||
|
return self.__class__('res', train=True, download=True)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def test_dataset(self):
|
||||||
|
return self.__class__('res', train=False, download=True)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def val_dataset(self):
|
||||||
|
return self.__class__('res', train=False, download=True)
|
@ -1,6 +1,9 @@
|
|||||||
import shelve
|
import shelve
|
||||||
|
from collections import defaultdict
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Union, List
|
from typing import Union
|
||||||
|
|
||||||
|
from torchvision.transforms import Normalize
|
||||||
|
|
||||||
import multiprocessing as mp
|
import multiprocessing as mp
|
||||||
|
|
||||||
@ -24,16 +27,17 @@ class TrajDataShelve(Dataset):
|
|||||||
return self[0][0].shape
|
return self[0][0].shape
|
||||||
|
|
||||||
def __init__(self, file_path, **kwargs):
|
def __init__(self, file_path, **kwargs):
|
||||||
|
assert Path(file_path).exists()
|
||||||
super(TrajDataShelve, self).__init__()
|
super(TrajDataShelve, self).__init__()
|
||||||
self._mutex = mp.Lock()
|
self._mutex = mp.Lock()
|
||||||
self.file_path = str(file_path)
|
self.file_path = str(file_path)
|
||||||
|
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
self._mutex.acquire()
|
self._mutex.acquire()
|
||||||
with shelve.open(self.file_path) as d:
|
with shelve.open(self.file_path) as d:
|
||||||
length = len(d)
|
length = len(d)
|
||||||
self._mutex.release()
|
d.close()
|
||||||
|
self._mutex.release()
|
||||||
return length
|
return length
|
||||||
|
|
||||||
def seed(self):
|
def seed(self):
|
||||||
@ -43,12 +47,20 @@ class TrajDataShelve(Dataset):
|
|||||||
self._mutex.acquire()
|
self._mutex.acquire()
|
||||||
with shelve.open(self.file_path) as d:
|
with shelve.open(self.file_path) as d:
|
||||||
sample = d[str(item)]
|
sample = d[str(item)]
|
||||||
self._mutex.release()
|
d.close()
|
||||||
|
self._mutex.release()
|
||||||
return sample
|
return sample
|
||||||
|
|
||||||
|
|
||||||
class TrajDataset(Dataset):
|
class TrajDataset(Dataset):
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _last_label_init(self):
|
||||||
|
d = defaultdict(lambda: -1)
|
||||||
|
d['generator_hom_all_in_map'] = V.ALTERNATIVE
|
||||||
|
d['generator_alt_all_in_map'] = V.HOMOTOPIC
|
||||||
|
return d[self.mode]
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def map_shape(self):
|
def map_shape(self):
|
||||||
return self.map.as_array.shape
|
return self.map.as_array.shape
|
||||||
@ -57,17 +69,18 @@ class TrajDataset(Dataset):
|
|||||||
length=100000, mode='separated_arrays', embedding_size=None, preserve_equal_samples=False,
|
length=100000, mode='separated_arrays', embedding_size=None, preserve_equal_samples=False,
|
||||||
**kwargs):
|
**kwargs):
|
||||||
super(TrajDataset, self).__init__()
|
super(TrajDataset, self).__init__()
|
||||||
assert mode.lower() in ['generator_all_in_map', 'generator_hom_all_in_map'
|
assert mode.lower() in ['generator_all_in_map', 'generator_hom_all_in_map', 'generator_alt_all_in_map',
|
||||||
'classifier_all_in_map']
|
'ae_no_label_in_map',
|
||||||
self.normalized = normalized
|
'generator_alt_no_label_in_map', 'classifier_all_in_map', 'vae_no_label_in_map']
|
||||||
|
self.normalize = Normalize(0.5, 0.5) if normalized else lambda x: x
|
||||||
self.preserve_equal_samples = preserve_equal_samples
|
self.preserve_equal_samples = preserve_equal_samples
|
||||||
self.mode = mode
|
self.mode = mode
|
||||||
self.mapname = mapname if mapname.endswith('.bmp') else f'{mapname}.bmp'
|
self.mapname = mapname if mapname.endswith('.bmp') else f'{mapname}.bmp'
|
||||||
self.maps_root = maps_root
|
self.maps_root = maps_root
|
||||||
self._len = length
|
self._len = length
|
||||||
self.last_label = V.ALTERNATIVE if 'hom' in self.mode else choice([-1, V.ALTERNATIVE, V.HOMOTOPIC])
|
self.last_label = self._last_label_init
|
||||||
|
|
||||||
self.map = Map(self.mapname).from_image(self.maps_root / self.mapname, embedding_size=embedding_size)
|
self.map = Map.from_image(self.maps_root / self.mapname, embedding_size=embedding_size)
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return self._len
|
return self._len
|
||||||
@ -82,6 +95,7 @@ class TrajDataset(Dataset):
|
|||||||
map_array = torch.as_tensor(self.map.as_array).float()
|
map_array = torch.as_tensor(self.map.as_array).float()
|
||||||
return (map_array, trajectory_space), label
|
return (map_array, trajectory_space), label
|
||||||
|
|
||||||
|
# Produce an alternative.
|
||||||
while True:
|
while True:
|
||||||
trajectory = self.map.get_random_trajectory()
|
trajectory = self.map.get_random_trajectory()
|
||||||
alternative = self.map.generate_alternative(trajectory)
|
alternative = self.map.generate_alternative(trajectory)
|
||||||
@ -91,18 +105,19 @@ class TrajDataset(Dataset):
|
|||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
|
|
||||||
self.last_label = label if self.mode != ['generator_hom_all_in_map'] else V.ALTERNATIVE
|
self.last_label = label if self._last_label_init == V.ANY else self._last_label_init[self.mode]
|
||||||
if self.mode.lower() in ['classifier_all_in_map', 'generator_all_in_map']:
|
if 'in_map' in self.mode.lower():
|
||||||
map_array = self.map.as_array
|
map_array = self.map.as_array
|
||||||
trajectory = trajectory.draw_in_array(self.map_shape)
|
trajectory = trajectory.draw_in_array(self.map_shape)
|
||||||
alternative = alternative.draw_in_array(self.map_shape)
|
alternative = alternative.draw_in_array(self.map_shape)
|
||||||
label_as_array = np.full_like(map_array, label)
|
label_as_array = np.full_like(map_array, label)
|
||||||
if self.normalized:
|
|
||||||
map_array = map_array / V.WHITE
|
|
||||||
trajectory = trajectory / V.WHITE
|
|
||||||
alternative = alternative / V.WHITE
|
|
||||||
if self.mode == 'generator_all_in_map':
|
if self.mode == 'generator_all_in_map':
|
||||||
return np.concatenate((map_array, trajectory, label_as_array)), alternative
|
return np.concatenate((map_array, trajectory, label_as_array)), alternative
|
||||||
|
elif self.mode in ['vae_no_label_in_map', 'ae_no_label_in_map']:
|
||||||
|
return np.sum((map_array, trajectory, alternative), axis=0), 0
|
||||||
|
elif self.mode in ['generator_alt_no_label_in_map', 'generator_hom_no_label_in_map']:
|
||||||
|
return np.concatenate((map_array, trajectory)), alternative
|
||||||
elif self.mode == 'classifier_all_in_map':
|
elif self.mode == 'classifier_all_in_map':
|
||||||
return np.concatenate((map_array, trajectory, alternative)), label
|
return np.concatenate((map_array, trajectory, alternative)), label
|
||||||
|
|
||||||
@ -119,13 +134,13 @@ class TrajDataset(Dataset):
|
|||||||
class TrajData(object):
|
class TrajData(object):
|
||||||
@property
|
@property
|
||||||
def map_shapes(self):
|
def map_shapes(self):
|
||||||
return [dataset.map_shape for dataset in self._train_dataset.datasets]
|
return [dataset.map_shape for dataset in self.train_dataset.datasets]
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def map_shapes_max(self):
|
def map_shapes_max(self):
|
||||||
shapes = self.map_shapes
|
shapes = self.map_shapes
|
||||||
shape_list = list(map(max, zip(*shapes)))
|
shape_list = list(map(max, zip(*shapes)))
|
||||||
if '_all_in_map' in self.mode:
|
if '_all_in_map' in self.mode and not self.preprocessed:
|
||||||
shape_list[0] += 2
|
shape_list[0] += 2
|
||||||
return shape_list
|
return shape_list
|
||||||
|
|
||||||
@ -139,14 +154,13 @@ class TrajData(object):
|
|||||||
self.mode = mode
|
self.mode = mode
|
||||||
self.maps_root = Path(map_root)
|
self.maps_root = Path(map_root)
|
||||||
self.length = length
|
self.length = length
|
||||||
self._test_dataset = self._load_datasets('train')
|
self.test_dataset = self._load_datasets('test')
|
||||||
self._val_dataset = self._load_datasets('val')
|
self.val_dataset = self._load_datasets('val')
|
||||||
self._train_dataset = self._load_datasets('test')
|
self.train_dataset = self._load_datasets('train')
|
||||||
|
|
||||||
def _load_datasets(self, dataset_type=''):
|
def _load_datasets(self, dataset_type=''):
|
||||||
|
|
||||||
map_files = list(self.maps_root.glob('*.bmp'))
|
map_files = list(self.maps_root.glob('*.bmp'))
|
||||||
equal_split = int(self.length // len(map_files)) or 1
|
|
||||||
|
|
||||||
# find max image size among available maps:
|
# find max image size among available maps:
|
||||||
max_map_size = (1, ) + tuple(reversed(tuple(map(max, *[Image.open(map_file).size for map_file in map_files]))))
|
max_map_size = (1, ) + tuple(reversed(tuple(map(max, *[Image.open(map_file).size for map_file in map_files]))))
|
||||||
@ -156,10 +170,11 @@ class TrajData(object):
|
|||||||
preprocessed_map_names = [p.name for p in preprocessed_map_files]
|
preprocessed_map_names = [p.name for p in preprocessed_map_files]
|
||||||
datasets = []
|
datasets = []
|
||||||
for map_file in map_files:
|
for map_file in map_files:
|
||||||
new_pik_name = f'{dataset_type}_{str(map_file.name)[:-3]}.pik'
|
equal_split = int(self.length // len(map_files)) or 5
|
||||||
|
new_pik_name = f'{self.mode}_{map_file.name[:-4]}_{dataset_type}.pik'
|
||||||
if dataset_type != 'train':
|
if dataset_type != 'train':
|
||||||
equal_split *= 0.01
|
equal_split = max(int(equal_split * 0.01), 10)
|
||||||
if not [f'{new_pik_name[:-3]}.bmp' in preprocessed_map_names]:
|
if not new_pik_name in preprocessed_map_names:
|
||||||
traj_dataset = TrajDataset(maps_root=self.maps_root, mapname=map_file.name, length=equal_split,
|
traj_dataset = TrajDataset(maps_root=self.maps_root, mapname=map_file.name, length=equal_split,
|
||||||
mode=self.mode, embedding_size=max_map_size, normalized=self.normalized,
|
mode=self.mode, embedding_size=max_map_size, normalized=self.normalized,
|
||||||
preserve_equal_samples=True)
|
preserve_equal_samples=True)
|
||||||
@ -168,6 +183,9 @@ class TrajData(object):
|
|||||||
dataset = TrajDataShelve(map_file.parent / new_pik_name)
|
dataset = TrajDataShelve(map_file.parent / new_pik_name)
|
||||||
datasets.append(dataset)
|
datasets.append(dataset)
|
||||||
return ConcatDataset(datasets)
|
return ConcatDataset(datasets)
|
||||||
|
|
||||||
|
# Set the equal split so that all maps are visited with the same frequency
|
||||||
|
equal_split = int(self.length // len(map_files)) or 5
|
||||||
return ConcatDataset([TrajDataset(maps_root=self.maps_root, mapname=map_file.name, length=equal_split,
|
return ConcatDataset([TrajDataset(maps_root=self.maps_root, mapname=map_file.name, length=equal_split,
|
||||||
mode=self.mode, embedding_size=max_map_size, normalized=self.normalized,
|
mode=self.mode, embedding_size=max_map_size, normalized=self.normalized,
|
||||||
preserve_equal_samples=True)
|
preserve_equal_samples=True)
|
||||||
@ -185,29 +203,14 @@ class TrajData(object):
|
|||||||
|
|
||||||
def dump_n(self, file_path, traj_dataset: TrajDataset, n=100000):
|
def dump_n(self, file_path, traj_dataset: TrajDataset, n=100000):
|
||||||
assert str(file_path).endswith('.pik')
|
assert str(file_path).endswith('.pik')
|
||||||
processes = mp.cpu_count() - 1
|
|
||||||
mutex = mp.Lock()
|
mutex = mp.Lock()
|
||||||
with mp.Pool(processes) as pool:
|
for i in tqdm(range(n), total=n, desc=f'Generating {n} Samples'):
|
||||||
async_results = [pool.apply_async(traj_dataset.__getitem__, kwds=dict(item=i)) for i in range(n)]
|
sample = traj_dataset[i]
|
||||||
|
mutex.acquire()
|
||||||
|
write_to_shelve(file_path, sample)
|
||||||
|
mutex.release()
|
||||||
|
|
||||||
for result_obj in tqdm(async_results, total=n, desc=f'Generating {n} Samples'):
|
print(f'{n} samples successfully dumped to "{file_path}"!')
|
||||||
sample = result_obj.get()
|
|
||||||
mutex.acquire()
|
|
||||||
write_to_shelve(file_path, sample)
|
|
||||||
mutex.release()
|
|
||||||
print(f'{n} samples sucessfully dumped to "{file_path}"!')
|
|
||||||
|
|
||||||
@property
|
|
||||||
def train_dataset(self):
|
|
||||||
return self._train_dataset
|
|
||||||
|
|
||||||
@property
|
|
||||||
def val_dataset(self):
|
|
||||||
return self._val_dataset
|
|
||||||
|
|
||||||
@property
|
|
||||||
def test_dataset(self):
|
|
||||||
return self._test_dataset
|
|
||||||
|
|
||||||
def get_datasets(self):
|
def get_datasets(self):
|
||||||
return self._train_dataset, self._val_dataset, self._test_dataset
|
return self._train_dataset, self._val_dataset, self._test_dataset
|
||||||
|
@ -1,19 +1,22 @@
|
|||||||
from random import choices, seed
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from functools import reduce
|
from functools import reduce
|
||||||
from operator import mul
|
from operator import mul
|
||||||
|
|
||||||
|
from random import choices, choice
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
from torch import nn
|
from torch import nn
|
||||||
from torch.optim import Adam
|
from torch.optim import Adam
|
||||||
|
from torchvision.datasets import MNIST
|
||||||
|
|
||||||
|
from datasets.mnist import MyMNIST
|
||||||
from datasets.trajectory_dataset import TrajData
|
from datasets.trajectory_dataset import TrajData
|
||||||
from lib.evaluation.classification import ROCEvaluation
|
|
||||||
from lib.modules.blocks import ConvModule, ResidualModule, DeConvModule
|
from lib.modules.blocks import ConvModule, ResidualModule, DeConvModule
|
||||||
from lib.modules.utils import LightningBaseModule, Flatten
|
from lib.modules.utils import LightningBaseModule, Flatten
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
import lib.variables as V
|
||||||
|
from lib.visualization.generator_eval import GeneratorVisualizer
|
||||||
|
|
||||||
|
|
||||||
class CNNRouteGeneratorModel(LightningBaseModule):
|
class CNNRouteGeneratorModel(LightningBaseModule):
|
||||||
@ -24,48 +27,71 @@ class CNNRouteGeneratorModel(LightningBaseModule):
|
|||||||
return Adam(self.parameters(), lr=self.hparams.train_param.lr)
|
return Adam(self.parameters(), lr=self.hparams.train_param.lr)
|
||||||
|
|
||||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||||
batch_x, alternative = batch_xy
|
batch_x, target = batch_xy
|
||||||
generated_alternative, z, mu, logvar = self(batch_x)
|
generated_alternative, z, mu, logvar = self(batch_x)
|
||||||
element_wise_loss = self.criterion(generated_alternative, alternative)
|
target = batch_x if 'ae' in self.hparams.data_param.mode else target
|
||||||
# see Appendix B from VAE paper:
|
element_wise_loss = self.criterion(generated_alternative, target)
|
||||||
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
|
|
||||||
# https://arxiv.org/abs/1312.6114
|
|
||||||
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
|
|
||||||
|
|
||||||
kld_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
if 'vae' in self.hparams.data_param.mode:
|
||||||
# Dimensional Resizing TODO: Does This make sense? Sanity Check it!
|
# see Appendix B from VAE paper:
|
||||||
# kld_loss /= reduce(mul, self.in_shape)
|
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
|
||||||
# kld_loss *= self.hparams.data_param.dataset_length / self.hparams.train_param.batch_size * 100
|
# https://arxiv.org/abs/1312.6114
|
||||||
|
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
|
||||||
|
kld_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
||||||
|
# Dimensional Resizing TODO: Does This make sense? Sanity Check it!
|
||||||
|
# kld_loss /= reduce(mul, self.in_shape)
|
||||||
|
# kld_loss *= self.hparams.data_param.dataset_length / self.hparams.train_param.batch_size
|
||||||
|
|
||||||
loss = kld_loss + element_wise_loss
|
loss = kld_loss + element_wise_loss
|
||||||
|
else:
|
||||||
|
loss = element_wise_loss
|
||||||
|
kld_loss = 0
|
||||||
return dict(loss=loss, log=dict(element_wise_loss=element_wise_loss, loss=loss, kld_loss=kld_loss))
|
return dict(loss=loss, log=dict(element_wise_loss=element_wise_loss, loss=loss, kld_loss=kld_loss))
|
||||||
|
|
||||||
def _test_val_step(self, batch_xy, batch_nb, *args):
|
def _test_val_step(self, batch_xy, batch_nb, *args):
|
||||||
batch_x, _ = batch_xy
|
batch_x, _ = batch_xy
|
||||||
map_array = batch_x[:, 0].unsqueeze(1)
|
if 'vae' in self.hparams.data_param.mode:
|
||||||
trajectory = batch_x[:, 1].unsqueeze(1)
|
z, mu, logvar = self.encode(batch_x)
|
||||||
labels = batch_x[:, 2].unsqueeze(1).max(dim=-1).values.max(-1).values
|
else:
|
||||||
|
z = self.encode(batch_x)
|
||||||
|
mu, logvar = z, z
|
||||||
|
|
||||||
_, mu, _ = self.encode(batch_x)
|
|
||||||
generated_alternative = self.generate(mu)
|
generated_alternative = self.generate(mu)
|
||||||
return dict(maps=map_array, trajectories=trajectory, batch_nb=batch_nb, labels=labels,
|
return_dict = dict(input=batch_x, batch_nb=batch_nb, output=generated_alternative, z=z, mu=mu, logvar=logvar)
|
||||||
generated_alternative=generated_alternative, pred_label=-1)
|
|
||||||
|
if 'hom' in self.hparams.data_param.mode:
|
||||||
|
labels = torch.full((batch_x.shape[0], 1), V.HOMOTOPIC)
|
||||||
|
elif 'alt' in self.hparams.data_param.mode:
|
||||||
|
labels = torch.full((batch_x.shape[0], 1), V.ALTERNATIVE)
|
||||||
|
elif 'vae' in self.hparams.data_param.mode:
|
||||||
|
labels = torch.full((batch_x.shape[0], 1), V.ANY)
|
||||||
|
elif 'ae' in self.hparams.data_param.mode:
|
||||||
|
labels = torch.full((batch_x.shape[0], 1), V.ANY)
|
||||||
|
else:
|
||||||
|
labels = batch_x[:, 2].unsqueeze(1).max(dim=-1).values.max(-1).values
|
||||||
|
|
||||||
|
return_dict.update(labels=self._move_to_model_device(labels))
|
||||||
|
return return_dict
|
||||||
|
|
||||||
def _test_val_epoch_end(self, outputs, test=False):
|
def _test_val_epoch_end(self, outputs, test=False):
|
||||||
val_restul_dict = self.generate_random()
|
plt.close('all')
|
||||||
|
|
||||||
from lib.visualization.generator_eval import GeneratorVisualizer
|
g = GeneratorVisualizer(choice(outputs))
|
||||||
g = GeneratorVisualizer(**val_restul_dict)
|
fig = g.draw_io_bundle()
|
||||||
fig = g.draw()
|
|
||||||
self.logger.log_image(f'{self.name}_Output', fig, step=self.global_step)
|
self.logger.log_image(f'{self.name}_Output', fig, step=self.global_step)
|
||||||
plt.clf()
|
plt.clf()
|
||||||
|
|
||||||
|
fig = g.draw_latent()
|
||||||
|
self.logger.log_image(f'{self.name}_Latent', fig, step=self.global_step)
|
||||||
|
plt.clf()
|
||||||
|
|
||||||
return dict(epoch=self.current_epoch)
|
return dict(epoch=self.current_epoch)
|
||||||
|
|
||||||
def on_epoch_start(self):
|
def on_epoch_start(self):
|
||||||
self.dataset.seed(self.logger.version)
|
# self.dataset.seed(self.logger.version)
|
||||||
# torch.random.manual_seed(self.logger.version)
|
# torch.random.manual_seed(self.logger.version)
|
||||||
# np.random.seed(self.logger.version)
|
# np.random.seed(self.logger.version)
|
||||||
|
pass
|
||||||
|
|
||||||
def validation_step(self, *args):
|
def validation_step(self, *args):
|
||||||
return self._test_val_step(*args)
|
return self._test_val_step(*args)
|
||||||
@ -82,19 +108,23 @@ class CNNRouteGeneratorModel(LightningBaseModule):
|
|||||||
def __init__(self, *params, issubclassed=False):
|
def __init__(self, *params, issubclassed=False):
|
||||||
super(CNNRouteGeneratorModel, self).__init__(*params)
|
super(CNNRouteGeneratorModel, self).__init__(*params)
|
||||||
|
|
||||||
if not issubclassed:
|
if False:
|
||||||
# Dataset
|
# Dataset
|
||||||
self.dataset = TrajData(self.hparams.data_param.map_root, mode='generator_all_in_map',
|
self.dataset = TrajData(self.hparams.data_param.map_root,
|
||||||
|
mode=self.hparams.data_param.mode,
|
||||||
preprocessed=self.hparams.data_param.use_preprocessed,
|
preprocessed=self.hparams.data_param.use_preprocessed,
|
||||||
length=self.hparams.data_param.dataset_length, normalized=True)
|
length=self.hparams.data_param.dataset_length, normalized=True)
|
||||||
self.criterion = nn.MSELoss()
|
self.criterion = nn.MSELoss()
|
||||||
|
|
||||||
|
self.dataset = MyMNIST()
|
||||||
|
|
||||||
# Additional Attributes #
|
# Additional Attributes #
|
||||||
#######################################################
|
#######################################################
|
||||||
self.in_shape = self.dataset.map_shapes_max
|
self.in_shape = self.dataset.map_shapes_max
|
||||||
self.use_res_net = self.hparams.model_param.use_res_net
|
self.use_res_net = self.hparams.model_param.use_res_net
|
||||||
self.lat_dim = self.hparams.model_param.lat_dim
|
self.lat_dim = self.hparams.model_param.lat_dim
|
||||||
self.feature_dim = self.lat_dim * 10
|
self.feature_dim = self.lat_dim
|
||||||
|
self.out_channels = 1 if 'generator' in self.hparams.data_param.mode else self.in_shape[0]
|
||||||
########################################################
|
########################################################
|
||||||
|
|
||||||
# NN Nodes
|
# NN Nodes
|
||||||
@ -119,7 +149,7 @@ class CNNRouteGeneratorModel(LightningBaseModule):
|
|||||||
conv_filters=self.hparams.model_param.filters[1],
|
conv_filters=self.hparams.model_param.filters[1],
|
||||||
use_norm=self.hparams.model_param.use_norm,
|
use_norm=self.hparams.model_param.use_norm,
|
||||||
use_bias=self.hparams.model_param.use_bias)
|
use_bias=self.hparams.model_param.use_bias)
|
||||||
self.enc_conv_1b = ConvModule(self.enc_conv_1a.shape, conv_kernel=3, conv_stride=2, conv_padding=0,
|
self.enc_conv_1b = ConvModule(self.enc_conv_1a.shape, conv_kernel=3, conv_stride=1, conv_padding=0,
|
||||||
conv_filters=self.hparams.model_param.filters[1],
|
conv_filters=self.hparams.model_param.filters[1],
|
||||||
use_norm=self.hparams.model_param.use_norm,
|
use_norm=self.hparams.model_param.use_norm,
|
||||||
use_bias=self.hparams.model_param.use_bias)
|
use_bias=self.hparams.model_param.use_bias)
|
||||||
@ -137,20 +167,8 @@ class CNNRouteGeneratorModel(LightningBaseModule):
|
|||||||
use_norm=self.hparams.model_param.use_norm,
|
use_norm=self.hparams.model_param.use_norm,
|
||||||
use_bias=self.hparams.model_param.use_bias)
|
use_bias=self.hparams.model_param.use_bias)
|
||||||
|
|
||||||
self.enc_res_3 = ResidualModule(self.enc_conv_2b.shape, ConvModule, 2, conv_kernel=7, conv_stride=1,
|
last_conv_shape = self.enc_conv_2b.shape
|
||||||
conv_padding=3, conv_filters=self.hparams.model_param.filters[2],
|
self.enc_flat = Flatten(last_conv_shape)
|
||||||
use_norm=self.hparams.model_param.use_norm,
|
|
||||||
use_bias=self.hparams.model_param.use_bias)
|
|
||||||
self.enc_conv_3a = ConvModule(self.enc_res_3.shape, conv_kernel=7, conv_stride=1, conv_padding=0,
|
|
||||||
conv_filters=self.hparams.model_param.filters[2],
|
|
||||||
use_norm=self.hparams.model_param.use_norm,
|
|
||||||
use_bias=self.hparams.model_param.use_bias)
|
|
||||||
self.enc_conv_3b = ConvModule(self.enc_conv_3a.shape, conv_kernel=7, conv_stride=1, conv_padding=0,
|
|
||||||
conv_filters=self.hparams.model_param.filters[2],
|
|
||||||
use_norm=self.hparams.model_param.use_norm,
|
|
||||||
use_bias=self.hparams.model_param.use_bias)
|
|
||||||
|
|
||||||
self.enc_flat = Flatten(self.enc_conv_3b.shape)
|
|
||||||
self.enc_lin_1 = nn.Linear(self.enc_flat.shape, self.feature_dim)
|
self.enc_lin_1 = nn.Linear(self.enc_flat.shape, self.feature_dim)
|
||||||
|
|
||||||
#
|
#
|
||||||
@ -160,46 +178,43 @@ class CNNRouteGeneratorModel(LightningBaseModule):
|
|||||||
|
|
||||||
#
|
#
|
||||||
# Variational Bottleneck
|
# Variational Bottleneck
|
||||||
self.mu = nn.Linear(self.feature_dim, self.lat_dim)
|
if 'vae' in self.hparams.data_param.mode:
|
||||||
self.logvar = nn.Linear(self.feature_dim, self.lat_dim)
|
self.mu = nn.Linear(self.feature_dim, self.lat_dim)
|
||||||
|
self.logvar = nn.Linear(self.feature_dim, self.lat_dim)
|
||||||
|
|
||||||
|
#
|
||||||
|
# Linear Bottleneck
|
||||||
|
else:
|
||||||
|
self.z = nn.Linear(self.feature_dim, self.lat_dim)
|
||||||
|
|
||||||
#
|
#
|
||||||
# Alternative Generator
|
# Alternative Generator
|
||||||
self.gen_lin_1 = nn.Linear(self.hparams.model_param.lat_dim, self.feature_dim)
|
self.gen_lin_1 = nn.Linear(self.lat_dim, self.enc_flat.shape)
|
||||||
|
|
||||||
self.gen_lin_2 = nn.Linear(self.feature_dim, self.enc_flat.shape)
|
# self.gen_lin_2 = nn.Linear(self.feature_dim, self.enc_flat.shape)
|
||||||
|
|
||||||
self.reshape_to_last_conv = Flatten(self.enc_flat.shape, self.enc_conv_3b.shape)
|
self.reshape_to_last_conv = Flatten(self.enc_flat.shape, last_conv_shape)
|
||||||
|
|
||||||
self.gen_deconv_1a = DeConvModule(self.enc_conv_3b.shape, self.hparams.model_param.filters[2],
|
self.gen_deconv_1a = DeConvModule(last_conv_shape, self.hparams.model_param.filters[2],
|
||||||
conv_padding=0, conv_kernel=11, conv_stride=1,
|
conv_padding=1, conv_kernel=9, conv_stride=1,
|
||||||
use_norm=self.hparams.model_param.use_norm)
|
|
||||||
self.gen_deconv_1b = DeConvModule(self.gen_deconv_1a.shape, self.hparams.model_param.filters[2],
|
|
||||||
conv_padding=0, conv_kernel=9, conv_stride=2,
|
|
||||||
use_norm=self.hparams.model_param.use_norm)
|
use_norm=self.hparams.model_param.use_norm)
|
||||||
|
|
||||||
self.gen_deconv_2a = DeConvModule(self.gen_deconv_1b.shape, self.hparams.model_param.filters[1],
|
self.gen_deconv_2a = DeConvModule(self.gen_deconv_1a.shape, self.hparams.model_param.filters[1],
|
||||||
conv_padding=0, conv_kernel=7, conv_stride=1,
|
conv_padding=1, conv_kernel=7, conv_stride=1,
|
||||||
use_norm=self.hparams.model_param.use_norm)
|
|
||||||
self.gen_deconv_2b = DeConvModule(self.gen_deconv_2a.shape, self.hparams.model_param.filters[1],
|
|
||||||
conv_padding=0, conv_kernel=7, conv_stride=1,
|
|
||||||
use_norm=self.hparams.model_param.use_norm)
|
use_norm=self.hparams.model_param.use_norm)
|
||||||
|
|
||||||
self.gen_deconv_3a = DeConvModule(self.gen_deconv_2b.shape, self.hparams.model_param.filters[0],
|
self.gen_deconv_out = DeConvModule(self.gen_deconv_2a.shape, self.out_channels, activation=None,
|
||||||
conv_padding=1, conv_kernel=5, conv_stride=1,
|
|
||||||
use_norm=self.hparams.model_param.use_norm)
|
|
||||||
self.gen_deconv_3b = DeConvModule(self.gen_deconv_3a.shape, self.hparams.model_param.filters[0],
|
|
||||||
conv_padding=1, conv_kernel=4, conv_stride=1,
|
|
||||||
use_norm=self.hparams.model_param.use_norm)
|
|
||||||
|
|
||||||
self.gen_deconv_out = DeConvModule(self.gen_deconv_3b.shape, 1, activation=None,
|
|
||||||
conv_padding=0, conv_kernel=3, conv_stride=1,
|
conv_padding=0, conv_kernel=3, conv_stride=1,
|
||||||
use_norm=self.hparams.model_param.use_norm)
|
use_norm=self.hparams.model_param.use_norm)
|
||||||
|
|
||||||
def forward(self, batch_x):
|
def forward(self, batch_x):
|
||||||
#
|
#
|
||||||
# Encode
|
# Encode
|
||||||
z, mu, logvar = self.encode(batch_x)
|
if 'vae' in self.hparams.data_param.mode:
|
||||||
|
z, mu, logvar = self.encode(batch_x)
|
||||||
|
else:
|
||||||
|
z = self.encode(batch_x)
|
||||||
|
mu, logvar = z, z
|
||||||
|
|
||||||
#
|
#
|
||||||
# Generate
|
# Generate
|
||||||
@ -220,148 +235,46 @@ class CNNRouteGeneratorModel(LightningBaseModule):
|
|||||||
combined_tensor = self.enc_res_2(combined_tensor) if self.use_res_net else combined_tensor
|
combined_tensor = self.enc_res_2(combined_tensor) if self.use_res_net else combined_tensor
|
||||||
combined_tensor = self.enc_conv_2a(combined_tensor)
|
combined_tensor = self.enc_conv_2a(combined_tensor)
|
||||||
combined_tensor = self.enc_conv_2b(combined_tensor)
|
combined_tensor = self.enc_conv_2b(combined_tensor)
|
||||||
combined_tensor = self.enc_res_3(combined_tensor) if self.use_res_net else combined_tensor
|
# combined_tensor = self.enc_res_3(combined_tensor) if self.use_res_net else combined_tensor
|
||||||
combined_tensor = self.enc_conv_3a(combined_tensor)
|
# combined_tensor = self.enc_conv_3a(combined_tensor)
|
||||||
combined_tensor = self.enc_conv_3b(combined_tensor)
|
# combined_tensor = self.enc_conv_3b(combined_tensor)
|
||||||
|
|
||||||
combined_tensor = self.enc_flat(combined_tensor)
|
combined_tensor = self.enc_flat(combined_tensor)
|
||||||
combined_tensor = self.enc_lin_1(combined_tensor)
|
combined_tensor = self.enc_lin_1(combined_tensor)
|
||||||
combined_tensor = self.enc_lin_2(combined_tensor)
|
|
||||||
|
|
||||||
combined_tensor = self.enc_norm(combined_tensor)
|
combined_tensor = self.enc_norm(combined_tensor)
|
||||||
combined_tensor = self.activation(combined_tensor)
|
combined_tensor = self.activation(combined_tensor)
|
||||||
|
|
||||||
combined_tensor = self.enc_lin_2(combined_tensor)
|
combined_tensor = self.enc_lin_2(combined_tensor)
|
||||||
combined_tensor = self.enc_norm(combined_tensor)
|
combined_tensor = self.enc_norm(combined_tensor)
|
||||||
combined_tensor = self.activation(combined_tensor)
|
combined_tensor = self.activation(combined_tensor)
|
||||||
|
|
||||||
#
|
#
|
||||||
|
# Variational
|
||||||
# Parameter and Sampling
|
# Parameter and Sampling
|
||||||
mu = self.mu(combined_tensor)
|
if 'vae' in self.hparams.data_param.mode:
|
||||||
logvar = self.logvar(combined_tensor)
|
mu = self.mu(combined_tensor)
|
||||||
z = self.reparameterize(mu, logvar)
|
logvar = self.logvar(combined_tensor)
|
||||||
return z, mu, logvar
|
z = self.reparameterize(mu, logvar)
|
||||||
|
return z, mu, logvar
|
||||||
|
else:
|
||||||
|
#
|
||||||
|
# Linear Bottleneck
|
||||||
|
z = self.z(combined_tensor)
|
||||||
|
return z
|
||||||
|
|
||||||
def generate(self, z):
|
def generate(self, z):
|
||||||
alt_tensor = self.gen_lin_1(z)
|
alt_tensor = self.gen_lin_1(z)
|
||||||
alt_tensor = self.activation(alt_tensor)
|
alt_tensor = self.activation(alt_tensor)
|
||||||
alt_tensor = self.gen_lin_2(alt_tensor)
|
# alt_tensor = self.gen_lin_2(alt_tensor)
|
||||||
alt_tensor = self.activation(alt_tensor)
|
# alt_tensor = self.activation(alt_tensor)
|
||||||
alt_tensor = self.reshape_to_last_conv(alt_tensor)
|
alt_tensor = self.reshape_to_last_conv(alt_tensor)
|
||||||
alt_tensor = self.gen_deconv_1a(alt_tensor)
|
alt_tensor = self.gen_deconv_1a(alt_tensor)
|
||||||
alt_tensor = self.gen_deconv_1b(alt_tensor)
|
|
||||||
alt_tensor = self.gen_deconv_2a(alt_tensor)
|
alt_tensor = self.gen_deconv_2a(alt_tensor)
|
||||||
alt_tensor = self.gen_deconv_2b(alt_tensor)
|
|
||||||
alt_tensor = self.gen_deconv_3a(alt_tensor)
|
# alt_tensor = self.gen_deconv_3a(alt_tensor)
|
||||||
alt_tensor = self.gen_deconv_3b(alt_tensor)
|
# alt_tensor = self.gen_deconv_3b(alt_tensor)
|
||||||
alt_tensor = self.gen_deconv_out(alt_tensor)
|
alt_tensor = self.gen_deconv_out(alt_tensor)
|
||||||
# alt_tensor = self.activation(alt_tensor)
|
# alt_tensor = self.activation(alt_tensor)
|
||||||
alt_tensor = self.sigmoid(alt_tensor)
|
# alt_tensor = self.sigmoid(alt_tensor)
|
||||||
return alt_tensor
|
return alt_tensor
|
||||||
|
|
||||||
def generate_random(self, n=12):
|
|
||||||
|
|
||||||
samples, alternatives = zip(*[self.dataset.test_dataset[choice]
|
|
||||||
for choice in choices(range(self.dataset.length), k=n)])
|
|
||||||
samples = self._move_to_model_device(torch.stack([torch.as_tensor(x) for x in samples]))
|
|
||||||
alternatives = self._move_to_model_device(torch.stack([torch.as_tensor(x) for x in alternatives]))
|
|
||||||
|
|
||||||
return self._test_val_step((samples, alternatives), -9999)
|
|
||||||
|
|
||||||
|
|
||||||
class CNNRouteGeneratorDiscriminated(CNNRouteGeneratorModel):
|
|
||||||
|
|
||||||
name = 'CNNRouteGeneratorDiscriminated'
|
|
||||||
|
|
||||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
|
||||||
batch_x, label = batch_xy
|
|
||||||
|
|
||||||
generated_alternative, z, mu, logvar = self(batch_x)
|
|
||||||
map_array, trajectory = batch_x
|
|
||||||
|
|
||||||
map_stack = torch.cat((map_array, trajectory, generated_alternative), dim=1)
|
|
||||||
pred_label = self.discriminator(map_stack)
|
|
||||||
discriminated_bce_loss = self.criterion(pred_label, label.float().unsqueeze(-1))
|
|
||||||
|
|
||||||
# see Appendix B from VAE paper:
|
|
||||||
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
|
|
||||||
# https://arxiv.org/abs/1312.6114
|
|
||||||
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
|
|
||||||
kld_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
|
||||||
# Dimensional Resizing
|
|
||||||
kld_loss /= reduce(mul, self.in_shape)
|
|
||||||
|
|
||||||
loss = (kld_loss + discriminated_bce_loss) / 2
|
|
||||||
return dict(loss=loss, log=dict(loss=loss,
|
|
||||||
discriminated_bce_loss=discriminated_bce_loss,
|
|
||||||
kld_loss=kld_loss)
|
|
||||||
)
|
|
||||||
|
|
||||||
def _test_val_step(self, batch_xy, batch_nb, *args):
|
|
||||||
batch_x, label = batch_xy
|
|
||||||
|
|
||||||
generated_alternative, z, mu, logvar = self(batch_x)
|
|
||||||
map_array, trajectory = batch_x
|
|
||||||
|
|
||||||
map_stack = torch.cat((map_array, trajectory, generated_alternative), dim=1)
|
|
||||||
pred_label = self.discriminator(map_stack)
|
|
||||||
|
|
||||||
discriminated_bce_loss = self.criterion(pred_label, label.float().unsqueeze(-1))
|
|
||||||
return dict(discriminated_bce_loss=discriminated_bce_loss, batch_nb=batch_nb,
|
|
||||||
pred_label=pred_label, label=label, generated_alternative=generated_alternative)
|
|
||||||
|
|
||||||
def validation_step(self, *args):
|
|
||||||
return self._test_val_step(*args)
|
|
||||||
|
|
||||||
def validation_epoch_end(self, outputs: list):
|
|
||||||
return self._test_val_epoch_end(outputs)
|
|
||||||
|
|
||||||
def _test_val_epoch_end(self, outputs, test=False):
|
|
||||||
evaluation = ROCEvaluation(plot_roc=True)
|
|
||||||
pred_label = torch.cat([x['pred_label'] for x in outputs])
|
|
||||||
labels = torch.cat([x['label'] for x in outputs]).unsqueeze(1)
|
|
||||||
mean_losses = torch.stack([x['discriminated_bce_loss'] for x in outputs]).mean()
|
|
||||||
|
|
||||||
# Sci-py call ROC eval call is eval(true_label, prediction)
|
|
||||||
roc_auc, tpr, fpr = evaluation(labels.cpu().numpy(), pred_label.cpu().numpy(), )
|
|
||||||
if test:
|
|
||||||
# self.logger.log_metrics(score_dict)
|
|
||||||
self.logger.log_image(f'{self.name}_ROC-Curve', plt.gcf(), step=self.global_step)
|
|
||||||
plt.clf()
|
|
||||||
|
|
||||||
maps, trajectories, labels, val_restul_dict = self.generate_random()
|
|
||||||
|
|
||||||
from lib.visualization.generator_eval import GeneratorVisualizer
|
|
||||||
g = GeneratorVisualizer(maps, trajectories, labels, val_restul_dict)
|
|
||||||
fig = g.draw()
|
|
||||||
self.logger.log_image(f'{self.name}_Output', fig, step=self.global_step)
|
|
||||||
plt.clf()
|
|
||||||
|
|
||||||
return dict(mean_losses=mean_losses, roc_auc=roc_auc, epoch=self.current_epoch)
|
|
||||||
|
|
||||||
def test_step(self, *args):
|
|
||||||
return self._test_val_step(*args)
|
|
||||||
|
|
||||||
def test_epoch_end(self, outputs):
|
|
||||||
return self._test_val_epoch_end(outputs, test=True)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def discriminator(self):
|
|
||||||
if self._disc is None:
|
|
||||||
raise RuntimeError('Set the Discriminator first; "set_discriminator(disc_model)')
|
|
||||||
return self._disc
|
|
||||||
|
|
||||||
def set_discriminator(self, disc_model):
|
|
||||||
if self._disc is not None:
|
|
||||||
raise RuntimeError('Discriminator has already been set... What are trying to do?')
|
|
||||||
self._disc = disc_model
|
|
||||||
|
|
||||||
def __init__(self, *params):
|
|
||||||
raise NotImplementedError
|
|
||||||
super(CNNRouteGeneratorDiscriminated, self).__init__(*params, issubclassed=True)
|
|
||||||
|
|
||||||
self._disc = None
|
|
||||||
|
|
||||||
self.criterion = nn.BCELoss()
|
|
||||||
|
|
||||||
self.dataset = TrajData(self.hparams.data_param.map_root, mode='just_route', preprocessed=True,
|
|
||||||
length=self.hparams.data_param.dataset_length, normalized=True)
|
|
||||||
|
116
lib/models/generators/cnn_discriminated.py
Normal file
@ -0,0 +1,116 @@
|
|||||||
|
from random import choices, seed
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from functools import reduce
|
||||||
|
from operator import mul
|
||||||
|
|
||||||
|
from torch import nn
|
||||||
|
from torch.optim import Adam
|
||||||
|
|
||||||
|
from datasets.trajectory_dataset import TrajData
|
||||||
|
from lib.evaluation.classification import ROCEvaluation
|
||||||
|
from lib.models.generators.cnn import CNNRouteGeneratorModel
|
||||||
|
from lib.modules.blocks import ConvModule, ResidualModule, DeConvModule
|
||||||
|
from lib.modules.utils import LightningBaseModule, Flatten
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
|
||||||
|
class CNNRouteGeneratorDiscriminated(CNNRouteGeneratorModel):
|
||||||
|
|
||||||
|
name = 'CNNRouteGeneratorDiscriminated'
|
||||||
|
|
||||||
|
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||||
|
batch_x, label = batch_xy
|
||||||
|
|
||||||
|
generated_alternative, z, mu, logvar = self(batch_x)
|
||||||
|
map_array, trajectory = batch_x
|
||||||
|
|
||||||
|
map_stack = torch.cat((map_array, trajectory, generated_alternative), dim=1)
|
||||||
|
pred_label = self.discriminator(map_stack)
|
||||||
|
discriminated_bce_loss = self.criterion(pred_label, label.float().unsqueeze(-1))
|
||||||
|
|
||||||
|
# see Appendix B from VAE paper:
|
||||||
|
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
|
||||||
|
# https://arxiv.org/abs/1312.6114
|
||||||
|
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
|
||||||
|
kld_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
||||||
|
# Dimensional Resizing
|
||||||
|
kld_loss /= reduce(mul, self.in_shape)
|
||||||
|
|
||||||
|
loss = (kld_loss + discriminated_bce_loss) / 2
|
||||||
|
return dict(loss=loss, log=dict(loss=loss,
|
||||||
|
discriminated_bce_loss=discriminated_bce_loss,
|
||||||
|
kld_loss=kld_loss)
|
||||||
|
)
|
||||||
|
|
||||||
|
def _test_val_step(self, batch_xy, batch_nb, *args):
|
||||||
|
batch_x, label = batch_xy
|
||||||
|
|
||||||
|
generated_alternative, z, mu, logvar = self(batch_x)
|
||||||
|
map_array, trajectory = batch_x
|
||||||
|
|
||||||
|
map_stack = torch.cat((map_array, trajectory, generated_alternative), dim=1)
|
||||||
|
pred_label = self.discriminator(map_stack)
|
||||||
|
|
||||||
|
discriminated_bce_loss = self.criterion(pred_label, label.float().unsqueeze(-1))
|
||||||
|
return dict(discriminated_bce_loss=discriminated_bce_loss, batch_nb=batch_nb,
|
||||||
|
pred_label=pred_label, label=label, generated_alternative=generated_alternative)
|
||||||
|
|
||||||
|
def validation_step(self, *args):
|
||||||
|
return self._test_val_step(*args)
|
||||||
|
|
||||||
|
def validation_epoch_end(self, outputs: list):
|
||||||
|
return self._test_val_epoch_end(outputs)
|
||||||
|
|
||||||
|
def _test_val_epoch_end(self, outputs, test=False):
|
||||||
|
evaluation = ROCEvaluation(plot_roc=True)
|
||||||
|
pred_label = torch.cat([x['pred_label'] for x in outputs])
|
||||||
|
labels = torch.cat([x['label'] for x in outputs]).unsqueeze(1)
|
||||||
|
mean_losses = torch.stack([x['discriminated_bce_loss'] for x in outputs]).mean()
|
||||||
|
|
||||||
|
# Sci-py call ROC eval call is eval(true_label, prediction)
|
||||||
|
roc_auc, tpr, fpr = evaluation(labels.cpu().numpy(), pred_label.cpu().numpy(), )
|
||||||
|
if test:
|
||||||
|
# self.logger.log_metrics(score_dict)
|
||||||
|
self.logger.log_image(f'{self.name}_ROC-Curve', plt.gcf(), step=self.global_step)
|
||||||
|
plt.clf()
|
||||||
|
|
||||||
|
maps, trajectories, labels, val_restul_dict = self.generate_random()
|
||||||
|
|
||||||
|
from lib.visualization.generator_eval import GeneratorVisualizer
|
||||||
|
g = GeneratorVisualizer(maps, trajectories, labels, val_restul_dict)
|
||||||
|
fig = g.draw()
|
||||||
|
self.logger.log_image(f'{self.name}_Output', fig, step=self.global_step)
|
||||||
|
plt.clf()
|
||||||
|
|
||||||
|
return dict(mean_losses=mean_losses, roc_auc=roc_auc, epoch=self.current_epoch)
|
||||||
|
|
||||||
|
def test_step(self, *args):
|
||||||
|
return self._test_val_step(*args)
|
||||||
|
|
||||||
|
def test_epoch_end(self, outputs):
|
||||||
|
return self._test_val_epoch_end(outputs, test=True)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def discriminator(self):
|
||||||
|
if self._disc is None:
|
||||||
|
raise RuntimeError('Set the Discriminator first; "set_discriminator(disc_model)')
|
||||||
|
return self._disc
|
||||||
|
|
||||||
|
def set_discriminator(self, disc_model):
|
||||||
|
if self._disc is not None:
|
||||||
|
raise RuntimeError('Discriminator has already been set... What are trying to do?')
|
||||||
|
self._disc = disc_model
|
||||||
|
|
||||||
|
def __init__(self, *params):
|
||||||
|
raise NotImplementedError
|
||||||
|
super(CNNRouteGeneratorDiscriminated, self).__init__(*params, issubclassed=True)
|
||||||
|
|
||||||
|
self._disc = None
|
||||||
|
|
||||||
|
self.criterion = nn.BCELoss()
|
||||||
|
|
||||||
|
self.dataset = TrajData(self.hparams.data_param.map_root, mode='just_route', preprocessed=True,
|
||||||
|
length=self.hparams.data_param.dataset_length, normalized=True)
|
@ -189,5 +189,5 @@ class MapStorage(UserDict):
|
|||||||
)
|
)
|
||||||
|
|
||||||
for map_file in map_files:
|
for map_file in map_files:
|
||||||
current_map = Map().from_image(map_file, embedding_size=self.max_map_size)
|
current_map = Map.from_image(map_file, embedding_size=self.max_map_size)
|
||||||
self.__setitem__(map_file.name, current_map)
|
self.__setitem__(map_file.name, current_map)
|
||||||
|
@ -5,7 +5,9 @@ from collections import defaultdict
|
|||||||
from configparser import ConfigParser
|
from configparser import ConfigParser
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
from lib.models.generators.cnn import CNNRouteGeneratorModel, CNNRouteGeneratorDiscriminated
|
from lib.models.generators.cnn import CNNRouteGeneratorModel
|
||||||
|
from lib.models.generators.cnn_discriminated import CNNRouteGeneratorDiscriminated
|
||||||
|
|
||||||
from lib.models.homotopy_classification.cnn_based import ConvHomDetector
|
from lib.models.homotopy_classification.cnn_based import ConvHomDetector
|
||||||
from lib.utils.model_io import ModelParameters
|
from lib.utils.model_io import ModelParameters
|
||||||
from lib.utils.transforms import AsArray
|
from lib.utils.transforms import AsArray
|
||||||
|
@ -37,7 +37,7 @@ class Logger(LightningLoggerBase):
|
|||||||
@property
|
@property
|
||||||
def outpath(self):
|
def outpath(self):
|
||||||
# ToDo: Add further path modification such as dataset config etc.
|
# ToDo: Add further path modification such as dataset config etc.
|
||||||
return Path(self.config.train.outpath)
|
return Path(self.config.train.outpath) / self.config.data.mode
|
||||||
|
|
||||||
def __init__(self, config: Config):
|
def __init__(self, config: Config):
|
||||||
"""
|
"""
|
||||||
|
@ -9,6 +9,7 @@ def write_to_shelve(file_path, value):
|
|||||||
with shelve.open(str(file_path), protocol=pickle.HIGHEST_PROTOCOL) as f:
|
with shelve.open(str(file_path), protocol=pickle.HIGHEST_PROTOCOL) as f:
|
||||||
new_key = str(len(f))
|
new_key = str(len(f))
|
||||||
f[new_key] = value
|
f[new_key] = value
|
||||||
|
f.close()
|
||||||
|
|
||||||
|
|
||||||
def load_from_shelve(file_path, key):
|
def load_from_shelve(file_path, key):
|
||||||
|
@ -1,9 +1,15 @@
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
_ROOT = Path('..')
|
_ROOT = Path('..')
|
||||||
|
|
||||||
|
# Labels for classes
|
||||||
HOMOTOPIC = 1
|
HOMOTOPIC = 1
|
||||||
ALTERNATIVE = 0
|
ALTERNATIVE = 0
|
||||||
|
ANY = -1
|
||||||
|
|
||||||
|
# Colors for img files
|
||||||
WHITE = 255
|
WHITE = 255
|
||||||
BLACK = 0
|
BLACK = 0
|
||||||
|
|
||||||
DPI = 100
|
# Variables for plotting
|
||||||
|
PADDING = 0.25
|
||||||
|
DPI = 50
|
||||||
|
@ -1,53 +1,106 @@
|
|||||||
|
from collections import defaultdict
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
import matplotlib.cm as cmaps
|
||||||
from mpl_toolkits.axisartist.axes_grid import ImageGrid
|
from mpl_toolkits.axisartist.axes_grid import ImageGrid
|
||||||
|
from sklearn.cluster import Birch, DBSCAN, KMeans
|
||||||
|
from sklearn.decomposition import PCA
|
||||||
|
from sklearn.manifold import TSNE
|
||||||
|
|
||||||
import lib.variables as V
|
import lib.variables as V
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
class GeneratorVisualizer(object):
|
class GeneratorVisualizer(object):
|
||||||
|
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, outputs, k=8):
|
||||||
# val_results = dict(discriminated_bce_loss, batch_nb, pred_label, label, generated_alternative)
|
d = defaultdict(list)
|
||||||
self.alternatives = kwargs.get('generated_alternative')
|
for key in outputs.keys():
|
||||||
self.labels = kwargs.get('labels')
|
try:
|
||||||
self.trajectories = kwargs.get('trajectories')
|
d[key] = outputs[key][:k].cpu().numpy()
|
||||||
self.maps = kwargs.get('maps')
|
except AttributeError:
|
||||||
|
d[key] = outputs[key][:k]
|
||||||
|
except TypeError:
|
||||||
|
self.batch_nb = outputs[key]
|
||||||
|
for key in d.keys():
|
||||||
|
self.__setattr__(key, d[key])
|
||||||
|
|
||||||
self._map_width, self._map_height = self.maps[0].squeeze().shape
|
# val_results = dict(discriminated_bce_loss, batch_nb, pred_label, label, generated_alternative)
|
||||||
|
self._map_width, self._map_height = self.input.shape[1], self.input.shape[2]
|
||||||
self.column_dict_list = self._build_column_dict_list()
|
self.column_dict_list = self._build_column_dict_list()
|
||||||
self._cols = len(self.column_dict_list)
|
self._cols = len(self.column_dict_list)
|
||||||
self._rows = len(self.column_dict_list[0])
|
self._rows = len(self.column_dict_list[0])
|
||||||
|
|
||||||
|
self.colormap = cmaps.tab20
|
||||||
|
|
||||||
def _build_column_dict_list(self):
|
def _build_column_dict_list(self):
|
||||||
trajectories = []
|
trajectories = []
|
||||||
non_hom_alternatives = []
|
alternatives = []
|
||||||
hom_alternatives = []
|
|
||||||
|
|
||||||
for idx in range(self.alternatives.shape[0]):
|
for idx in range(self.output.shape[0]):
|
||||||
image = (self.alternatives[idx]).cpu().numpy().squeeze()
|
image = (self.output[idx]).squeeze()
|
||||||
label = self.labels[idx].item()
|
label = 'Homotopic' if self.labels[idx].item() == V.HOMOTOPIC else 'Alternative'
|
||||||
# Dirty and Quick hack incomming.
|
alternatives.append(dict(image=image, label=label))
|
||||||
if label == V.HOMOTOPIC:
|
|
||||||
hom_alternatives.append(dict(image=image, label='Homotopic'))
|
for idx in range(len(alternatives)):
|
||||||
non_hom_alternatives.append(None)
|
image = (self.input[idx]).squeeze()
|
||||||
else:
|
|
||||||
non_hom_alternatives.append(dict(image=image, label='NonHomotopic'))
|
|
||||||
hom_alternatives.append(None)
|
|
||||||
for idx in range(max(len(hom_alternatives), len(non_hom_alternatives))):
|
|
||||||
image = (self.maps[idx] + self.trajectories[idx]).cpu().numpy().squeeze()
|
|
||||||
label = 'original'
|
label = 'original'
|
||||||
trajectories.append(dict(image=image, label=label))
|
trajectories.append(dict(image=image, label=label))
|
||||||
|
|
||||||
return trajectories, hom_alternatives, non_hom_alternatives
|
return trajectories, alternatives
|
||||||
|
|
||||||
def draw(self):
|
@staticmethod
|
||||||
padding = 0.25
|
def cluster_data(data):
|
||||||
additional_size = self._cols * padding + 3 * padding
|
|
||||||
width = (self._map_width * self._cols) / V.DPI + additional_size
|
cluster = Birch()
|
||||||
height = (self._map_height * self._rows) / V.DPI + additional_size
|
|
||||||
|
labels = cluster.fit_predict(data)
|
||||||
|
return labels
|
||||||
|
|
||||||
|
def draw_latent(self):
|
||||||
|
plt.close('all')
|
||||||
|
clusterer = KMeans(10)
|
||||||
|
try:
|
||||||
|
labels = clusterer.fit_predict(self.logvar)
|
||||||
|
except ValueError:
|
||||||
|
fig = plt.figure()
|
||||||
|
return fig
|
||||||
|
if self.z.shape[-1] > 2:
|
||||||
|
fig, axs = plt.subplots(ncols=2, nrows=1)
|
||||||
|
transformers = [TSNE(2), PCA(2)]
|
||||||
|
for idx, transformer in enumerate(transformers):
|
||||||
|
transformed = transformer.fit_transform(self.z)
|
||||||
|
|
||||||
|
colored = self.colormap(labels)
|
||||||
|
ax = axs[idx]
|
||||||
|
ax.scatter(x=transformed[:, 0], y=transformed[:, 1], c=colored)
|
||||||
|
ax.set_title(transformer.__class__.__name__)
|
||||||
|
ax.set_xlim(np.min(transformed[:, 0])*1.1, np.max(transformed[:, 0]*1.1))
|
||||||
|
ax.set_ylim(np.min(transformed[:, 1]*1.1), np.max(transformed[:, 1]*1.1))
|
||||||
|
elif self.z.shape[-1] == 2:
|
||||||
|
fig, axs = plt.subplots()
|
||||||
|
|
||||||
|
# TODO: Build transformation for lat_dim_size >= 3
|
||||||
|
print('All Predictions sucesfully Gathered and Shaped ')
|
||||||
|
axs.set_xlim(np.min(self.z[:, 0]), np.max(self.z[:, 0]))
|
||||||
|
axs.set_ylim(np.min(self.z[:, 1]), np.max(self.z[:, 1]))
|
||||||
|
# ToDo: Insert Normalization
|
||||||
|
colored = self.colormap(labels)
|
||||||
|
plt.scatter(self.z[:, 0], self.z[:, 1], c=colored)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError("Latent Dimensions can not be one-dimensional (yet).")
|
||||||
|
|
||||||
|
return fig
|
||||||
|
|
||||||
|
def draw_io_bundle(self):
|
||||||
|
width, height = self._cols * 5, self._rows * 5
|
||||||
|
additional_size = self._cols * V.PADDING + 3 * V.PADDING
|
||||||
|
# width = (self._map_width * self._cols) / V.DPI + additional_size
|
||||||
|
# height = (self._map_height * self._rows) / V.DPI + additional_size
|
||||||
fig = plt.figure(figsize=(width, height), dpi=V.DPI)
|
fig = plt.figure(figsize=(width, height), dpi=V.DPI)
|
||||||
grid = ImageGrid(fig, 111, # similar to subplot(111)
|
grid = ImageGrid(fig, 111, # similar to subplot(111)
|
||||||
nrows_ncols=(self._rows, self._cols),
|
nrows_ncols=(self._rows, self._cols),
|
||||||
axes_pad=padding, # pad between axes in inch.
|
axes_pad=V.PADDING, # pad between axes in inch.
|
||||||
)
|
)
|
||||||
|
|
||||||
for idx in range(len(grid.axes_all)):
|
for idx in range(len(grid.axes_all)):
|
||||||
|
16
main.py
@ -33,12 +33,13 @@ main_arg_parser.add_argument("--main_seed", type=int, default=69, help="")
|
|||||||
|
|
||||||
# Data Parameters
|
# Data Parameters
|
||||||
main_arg_parser.add_argument("--data_worker", type=int, default=10, help="")
|
main_arg_parser.add_argument("--data_worker", type=int, default=10, help="")
|
||||||
main_arg_parser.add_argument("--data_dataset_length", type=int, default=100000, help="")
|
main_arg_parser.add_argument("--data_dataset_length", type=int, default=10000, help="")
|
||||||
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
|
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
|
||||||
main_arg_parser.add_argument("--data_map_root", type=str, default='res/shapes', help="")
|
main_arg_parser.add_argument("--data_map_root", type=str, default='res/shapes', help="")
|
||||||
main_arg_parser.add_argument("--data_normalized", type=strtobool, default=True, help="")
|
main_arg_parser.add_argument("--data_normalized", type=strtobool, default=True, help="")
|
||||||
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
|
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
|
||||||
|
|
||||||
|
main_arg_parser.add_argument("--data_mode", type=str, default='ae_no_label_in_map', help="")
|
||||||
|
|
||||||
# Transformations
|
# Transformations
|
||||||
main_arg_parser.add_argument("--transformations_to_tensor", type=strtobool, default=False, help="")
|
main_arg_parser.add_argument("--transformations_to_tensor", type=strtobool, default=False, help="")
|
||||||
@ -46,7 +47,7 @@ main_arg_parser.add_argument("--transformations_to_tensor", type=strtobool, defa
|
|||||||
# Transformations
|
# Transformations
|
||||||
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
|
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
|
||||||
main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="")
|
main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="")
|
||||||
main_arg_parser.add_argument("--train_epochs", type=int, default=20, help="")
|
main_arg_parser.add_argument("--train_epochs", type=int, default=200, help="")
|
||||||
main_arg_parser.add_argument("--train_batch_size", type=int, default=164, help="")
|
main_arg_parser.add_argument("--train_batch_size", type=int, default=164, help="")
|
||||||
main_arg_parser.add_argument("--train_lr", type=float, default=0.002, help="")
|
main_arg_parser.add_argument("--train_lr", type=float, default=0.002, help="")
|
||||||
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
|
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
|
||||||
@ -54,9 +55,9 @@ main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0
|
|||||||
# Model
|
# Model
|
||||||
main_arg_parser.add_argument("--model_type", type=str, default="CNNRouteGenerator", help="")
|
main_arg_parser.add_argument("--model_type", type=str, default="CNNRouteGenerator", help="")
|
||||||
main_arg_parser.add_argument("--model_activation", type=str, default="elu", help="")
|
main_arg_parser.add_argument("--model_activation", type=str, default="elu", help="")
|
||||||
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 64]", help="")
|
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 32]", help="")
|
||||||
main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
|
main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
|
||||||
main_arg_parser.add_argument("--model_lat_dim", type=int, default=8, help="")
|
main_arg_parser.add_argument("--model_lat_dim", type=int, default=4, help="")
|
||||||
main_arg_parser.add_argument("--model_use_bias", type=strtobool, default=True, help="")
|
main_arg_parser.add_argument("--model_use_bias", type=strtobool, default=True, help="")
|
||||||
main_arg_parser.add_argument("--model_use_norm", type=strtobool, default=True, help="")
|
main_arg_parser.add_argument("--model_use_norm", type=strtobool, default=True, help="")
|
||||||
main_arg_parser.add_argument("--model_use_res_net", type=strtobool, default=False, help="")
|
main_arg_parser.add_argument("--model_use_res_net", type=strtobool, default=False, help="")
|
||||||
@ -101,7 +102,7 @@ def run_lightning_loop(config_obj):
|
|||||||
model.init_weights(torch.nn.init.xavier_normal_)
|
model.init_weights(torch.nn.init.xavier_normal_)
|
||||||
if model.name == 'CNNRouteGeneratorDiscriminated':
|
if model.name == 'CNNRouteGeneratorDiscriminated':
|
||||||
# ToDo: Make this dependent on the used seed
|
# ToDo: Make this dependent on the used seed
|
||||||
path = Path(Path(config_obj.train.outpath) / 'classifier_cnn' / 'version_0')
|
path = logger.outpath / 'classifier_cnn' / 'version_0'
|
||||||
disc_model = SavedLightningModels.load_checkpoint(path).restore()
|
disc_model = SavedLightningModels.load_checkpoint(path).restore()
|
||||||
model.set_discriminator(disc_model)
|
model.set_discriminator(disc_model)
|
||||||
|
|
||||||
@ -111,13 +112,12 @@ def run_lightning_loop(config_obj):
|
|||||||
show_progress_bar=True,
|
show_progress_bar=True,
|
||||||
weights_save_path=logger.log_dir,
|
weights_save_path=logger.log_dir,
|
||||||
gpus=[0] if torch.cuda.is_available() else None,
|
gpus=[0] if torch.cuda.is_available() else None,
|
||||||
check_val_every_n_epoch=1,
|
check_val_every_n_epoch=10,
|
||||||
num_sanity_val_steps=config_obj.train.num_sanity_val_steps,
|
# num_sanity_val_steps=config_obj.train.num_sanity_val_steps,
|
||||||
# row_log_interval=(model.n_train_batches * 0.1), # TODO: Better Value / Setting
|
# row_log_interval=(model.n_train_batches * 0.1), # TODO: Better Value / Setting
|
||||||
# log_save_interval=(model.n_train_batches * 0.2), # TODO: Better Value / Setting
|
# log_save_interval=(model.n_train_batches * 0.2), # TODO: Better Value / Setting
|
||||||
checkpoint_callback=checkpoint_callback,
|
checkpoint_callback=checkpoint_callback,
|
||||||
logger=logger,
|
logger=logger,
|
||||||
val_percent_check=0.025,
|
|
||||||
fast_dev_run=config_obj.main.debug,
|
fast_dev_run=config_obj.main.debug,
|
||||||
early_stop_callback=None
|
early_stop_callback=None
|
||||||
)
|
)
|
||||||
|
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 1.6 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 1.6 KiB |
Before Width: | Height: | Size: 1.6 KiB |
Before Width: | Height: | Size: 831 B |
Before Width: | Height: | Size: 1.6 KiB |
Before Width: | Height: | Size: 1.6 KiB |
Before Width: | Height: | Size: 1.6 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 29 KiB |