Train Active
This commit is contained in:
@@ -18,21 +18,12 @@ class ConvHomDetector(LightningBaseModule):
|
||||
def configure_optimizers(self):
|
||||
return Adam(self.parameters(), lr=self.hparams.lr)
|
||||
|
||||
def validation_step(self, *args, **kwargs):
|
||||
pass
|
||||
|
||||
def validation_end(self, outputs):
|
||||
pass
|
||||
|
||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||
batch_x, batch_y = batch_xy
|
||||
pred_y = self(batch_x)
|
||||
loss = F.binary_cross_entropy(pred_y, batch_y)
|
||||
loss = F.binary_cross_entropy(pred_y, batch_y.float())
|
||||
return {'loss': loss, 'log': dict(loss=loss)}
|
||||
|
||||
def test_step(self, *args, **kwargs):
|
||||
pass
|
||||
|
||||
def __init__(self, *params):
|
||||
super(ConvHomDetector, self).__init__(*params)
|
||||
|
||||
@@ -75,8 +66,9 @@ class ConvHomDetector(LightningBaseModule):
|
||||
#
|
||||
|
||||
self.linear = nn.Linear(reduce(mul, self.flatten.shape), self.hparams.model_param.classes * 10)
|
||||
self.classifier = nn.Linear(self.hparams.model_param.classes * 10, self.hparams.model_param.classes)
|
||||
self.softmax = nn.Softmax()
|
||||
# Comments on Multi Class labels
|
||||
self.classifier = nn.Linear(self.hparams.model_param.classes * 10, 1) # self.hparams.model_param.classes)
|
||||
self.out_activation = nn.Sigmoid() # nn.Softmax
|
||||
|
||||
def forward(self, x):
|
||||
tensor = self.map_conv_0(x)
|
||||
@@ -88,5 +80,5 @@ class ConvHomDetector(LightningBaseModule):
|
||||
tensor = self.flatten(tensor)
|
||||
tensor = self.linear(tensor)
|
||||
tensor = self.classifier(tensor)
|
||||
tensor = self.softmax(tensor)
|
||||
tensor = self.out_activation(tensor)
|
||||
return tensor
|
||||
|
||||
@@ -106,7 +106,7 @@ class ResidualModule(nn.Module):
|
||||
self.in_shape = in_shape
|
||||
module_paramters.update(in_shape=in_shape)
|
||||
self.activation = activation() if activation else lambda x: x
|
||||
self.residual_block = [module_class(**module_paramters) for _ in range(n)]
|
||||
self.residual_block = nn.ModuleList([module_class(**module_paramters) for _ in range(n)])
|
||||
assert self.in_shape == self.shape, f'The in_shape: {self.in_shape} - must match the out_shape: {self.shape}.'
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
@@ -133,12 +133,6 @@ class LightningBaseModule(pl.LightningModule, ABC):
|
||||
def forward(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def validation_step(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def validation_end(self, outputs):
|
||||
raise NotImplementedError
|
||||
|
||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -146,21 +140,7 @@ class LightningBaseModule(pl.LightningModule, ABC):
|
||||
raise NotImplementedError
|
||||
|
||||
def test_end(self, outputs):
|
||||
from sklearn.metrics import roc_auc_score
|
||||
|
||||
y_scores, y_true = [], []
|
||||
for output in outputs:
|
||||
y_scores.append(output['y_pred'])
|
||||
y_true.append(output['y_true'])
|
||||
|
||||
y_true = torch.cat(y_true, dim=0)
|
||||
# FIXME: What did this do do i need it?
|
||||
# y_true = (y_true != V.HOMOTOPIC).long()
|
||||
y_scores = torch.cat(y_scores, dim=0)
|
||||
|
||||
roc_auc_scores = roc_auc_score(y_true.cpu().numpy(), y_scores.cpu().numpy())
|
||||
print(f'AUC Score: {roc_auc_scores}')
|
||||
return {'roc_auc_scores': roc_auc_scores}
|
||||
raise NotImplementedError
|
||||
|
||||
def init_weights(self):
|
||||
def _weight_init(m):
|
||||
|
||||
@@ -29,11 +29,11 @@ class Map(object):
|
||||
|
||||
@property
|
||||
def width(self):
|
||||
return self.shape[0]
|
||||
return self.shape[-2]
|
||||
|
||||
@property
|
||||
def height(self):
|
||||
return self.shape[1]
|
||||
return self.shape[-1]
|
||||
|
||||
@property
|
||||
def as_graph(self):
|
||||
@@ -43,6 +43,10 @@ class Map(object):
|
||||
def as_array(self):
|
||||
return self.map_array
|
||||
|
||||
@property
|
||||
def as_2d_array(self):
|
||||
return self.map_array[1:]
|
||||
|
||||
def __init__(self, name='', array_like_map_representation=None):
|
||||
if array_like_map_representation is not None:
|
||||
if array_like_map_representation.ndim == 2:
|
||||
@@ -72,22 +76,26 @@ class Map(object):
|
||||
# Differentiate between 8 and 4 neighbors
|
||||
if not full_neighbors and n >= 2:
|
||||
break
|
||||
|
||||
# ToDO: make this explicite and less ugly
|
||||
query_node = idx[:1] + (idx[1] + ydif,) + (idx[2] + xdif,)
|
||||
if graph.has_node(query_node):
|
||||
graph.add_edge(idx, query_node, weight=weight)
|
||||
|
||||
return graph
|
||||
|
||||
@classmethod
|
||||
def from_image(cls, imagepath: Path):
|
||||
def from_image(cls, imagepath: Path, embedding_size=None):
|
||||
with Image.open(imagepath) as image:
|
||||
# Turn the image to single Channel Greyscale
|
||||
if image.mode != 'L':
|
||||
image = image.convert('L')
|
||||
map_array = np.expand_dims(np.array(image), axis=0)
|
||||
return cls(name=imagepath.name, array_like_map_representation=map_array)
|
||||
if embedding_size:
|
||||
assert isinstance(embedding_size, tuple), f'embedding_size was of type: {type(embedding_size)}'
|
||||
embedding = np.zeros(embedding_size)
|
||||
embedding[:map_array.shape[0], :map_array.shape[1], :map_array.shape[2]] = map_array
|
||||
map_array = embedding
|
||||
|
||||
return cls(name=imagepath.name, array_like_map_representation=map_array)
|
||||
|
||||
def simple_trajectory_between(self, start, dest):
|
||||
vertices = list(nx.shortest_path(self._G, start, dest))
|
||||
@@ -105,36 +113,46 @@ class Map(object):
|
||||
return Trajectory(coords)
|
||||
|
||||
def get_random_trajectory(self):
|
||||
start = self.get_valid_position()
|
||||
dest = self.get_valid_position()
|
||||
return self.simple_trajectory_between(start, dest)
|
||||
simple_trajectory = None
|
||||
while simple_trajectory is None:
|
||||
try:
|
||||
start = self.get_valid_position()
|
||||
dest = self.get_valid_position()
|
||||
simple_trajectory = self.simple_trajectory_between(start, dest)
|
||||
except nx.exception.NetworkXNoPath:
|
||||
pass
|
||||
return simple_trajectory
|
||||
|
||||
def generate_alternative(self, trajectory, mode='one_patching'):
|
||||
start, dest = trajectory.endpoints
|
||||
if mode == 'one_patching':
|
||||
patch = self.get_valid_position()
|
||||
alternative = self.get_trajectory_from_vertices(start, patch, dest)
|
||||
else:
|
||||
raise RuntimeError(f'mode checking went wrong...')
|
||||
|
||||
alternative = None
|
||||
while alternative is None:
|
||||
try:
|
||||
if mode == 'one_patching':
|
||||
patch = self.get_valid_position()
|
||||
alternative = self.get_trajectory_from_vertices(start, patch, dest)
|
||||
else:
|
||||
raise RuntimeError(f'mode checking went wrong...')
|
||||
except nx.exception.NetworkXNoPath:
|
||||
pass
|
||||
return alternative
|
||||
|
||||
def are_homotopic(self, trajectory, other_trajectory):
|
||||
if not all(isinstance(x, Trajectory) for x in [trajectory, other_trajectory]):
|
||||
raise TypeError
|
||||
polyline = trajectory.vertices.copy()
|
||||
polyline.extend(reversed(other_trajectory.vertices))
|
||||
polyline = trajectory.xy_vertices
|
||||
polyline.extend(reversed(other_trajectory.xy_vertices))
|
||||
|
||||
img = Image.new('L', (self.height, self.width), 0)
|
||||
draw = ImageDraw.Draw(img)
|
||||
draw.polygon(polyline, outline=255, fill=255)
|
||||
|
||||
a = (np.array(img) * np.where(self.map_array == self.white, 0, 1)).sum()
|
||||
a = (np.asarray(img) * np.where(self.as_2d_array == self.white, 0, 1)).sum()
|
||||
|
||||
if a >= 1:
|
||||
return False
|
||||
if a:
|
||||
return False # Non-Homotoph
|
||||
else:
|
||||
return True
|
||||
return True # Homotoph
|
||||
|
||||
def draw(self):
|
||||
fig, ax = plt.gcf(), plt.gca()
|
||||
|
||||
@@ -8,43 +8,51 @@ import numpy as np
|
||||
|
||||
class Trajectory(object):
|
||||
|
||||
@property
|
||||
def vertices(self):
|
||||
return self._vertices
|
||||
|
||||
@property
|
||||
def xy_vertices(self):
|
||||
return [(x,y) for _, x,y in self._vertices]
|
||||
|
||||
@property
|
||||
def endpoints(self):
|
||||
return self.start, self.dest
|
||||
|
||||
@property
|
||||
def start(self):
|
||||
return self.vertices[0]
|
||||
return self._vertices[0]
|
||||
|
||||
@property
|
||||
def dest(self):
|
||||
return self.vertices[-1]
|
||||
return self._vertices[-1]
|
||||
|
||||
@property
|
||||
def xs(self):
|
||||
return [x[1] for x in self.vertices]
|
||||
return [x[1] for x in self._vertices]
|
||||
|
||||
@property
|
||||
def ys(self):
|
||||
return [x[0] for x in self.vertices]
|
||||
return [x[0] for x in self._vertices]
|
||||
|
||||
@property
|
||||
def as_paired_list(self):
|
||||
return list(zip(self.vertices[:-1], self.vertices[1:]))
|
||||
return list(zip(self._vertices[:-1], self._vertices[1:]))
|
||||
|
||||
@property
|
||||
def np_vertices(self):
|
||||
return [np.array(vertice) for vertice in self.vertices]
|
||||
return [np.array(vertice) for vertice in self._vertices]
|
||||
|
||||
def __init__(self, vertices: Union[List[Tuple[int]], None] = None):
|
||||
assert any((isinstance(vertices, list), vertices is None))
|
||||
if vertices is not None:
|
||||
self.vertices = vertices
|
||||
self._vertices = vertices
|
||||
pass
|
||||
|
||||
def is_equal_to(self, other_trajectory):
|
||||
# ToDo: do further equality Checks here
|
||||
return self.vertices == other_trajectory.vertices
|
||||
return self._vertices == other_trajectory.vertices
|
||||
|
||||
def draw(self, highlights=True, label=None, **kwargs):
|
||||
if label is not None:
|
||||
|
||||
Reference in New Issue
Block a user