Model blocks, Model files, rearrange project structure

This commit is contained in:
Steffen Illium
2020-02-14 10:48:59 +01:00
parent 91ecf157d6
commit 1ce8d5993b
17 changed files with 192 additions and 109 deletions

View File

View File

@@ -0,0 +1,37 @@
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
class ROCEvaluation(object):
BINARY_PROBLEM = 2
linewidth = 2
def __init__(self, save_fig=True):
self.epoch = 0
pass
def __call__(self, prediction, label, prepare_fig=True):
# Compute ROC curve and ROC area
fpr, tpr, _ = roc_curve(prediction, label)
roc_auc = auc(fpr, tpr)
if prepare_fig:
fig = self._prepare_fig()
fig.plot(fpr, tpr, color='darkorange',
lw=2, label=f'ROC curve (area = {roc_auc})')
self._prepare_fig()
return roc_auc
def _prepare_fig(self):
fig = plt.gcf()
fig.plot([0, 1], [0, 1], color='navy', lw=self.linewidth, linestyle='--')
fig.xlim([0.0, 1.0])
fig.ylim([0.0, 1.05])
fig.xlabel('False Positive Rate')
fig.ylabel('True Positive Rate')
fig.legend(loc="lower right")
return fig

View File

View File

@@ -156,6 +156,26 @@ class LightningBaseModule(pl.LightningModule, ABC):
self.apply(_weight_init)
class FilterLayer(nn.Module):
def __init__(self):
super(FilterLayer, self).__init__()
def forward(self, x):
tensor = x[:, -1]
return tensor
class MergingLayer(nn.Module):
def __init__(self):
super(MergingLayer, self).__init__()
def forward(self, x):
# ToDo: Which ones to combine?
return
#
# Sub - Modules
###################
@@ -241,6 +261,32 @@ class DeConvModule(nn.Module):
return self.shape
class RecurrentModule(nn.Module):
@property
def shape(self):
x = torch.randn(self.in_shape).unsqueeze(0)
output = self(x)
return output.shape[1:]
def __init__(self, in_shape, hidden_size, num_layers=1, cell_type=nn.GRU, use_bias=True, dropout=0):
super(RecurrentModule, self).__init__()
self.use_bias = use_bias
self.num_layers = num_layers
self.in_shape = in_shape
self.hidden_size = hidden_size
self.dropout = dropout
self.rnn = cell_type(self.in_shape[-1] * self.in_shape[-2], hidden_size,
num_layers=num_layers,
bias=self.use_bias,
batch_first=True,
dropout=self.dropout)
def forward(self, x):
tensor = self.rnn(x)
return tensor
#
# Full Model Parts
###################

29
lib/models/cnn.py Normal file
View File

@@ -0,0 +1,29 @@
from lib.models.blocks import RecurrentModule, ConvModule, DeConvModule, Generator, LightningBaseModule
class CNNRouteGeneratorModel(LightningBaseModule):
@classmethod
def name(cls):
pass
def configure_optimizers(self):
pass
def validation_step(self, *args, **kwargs):
pass
def validation_end(self, outputs):
pass
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
pass
def test_step(self, *args, **kwargs):
pass
def __init__(self, *params):
super(CNNRouteGeneratorModel, self).__init__(*params)
def forward(self, x):
pass

0
lib/models/full.py Normal file
View File

0
lib/models/recurrent.py Normal file
View File

View File

View File

@@ -0,0 +1,121 @@
import multiprocessing as mp
import pickle
import shelve
from collections import defaultdict
from pathlib import Path
from typing import Union
from tqdm import trange
from lib.objects.map import Map
class Generator:
possible_modes = ['one_patching']
def __init__(self, data_root, map_obj, binary=True):
self.binary: bool = binary
self.map: Map = map_obj
self.data_root = Path(data_root)
def generate_n_trajectories_m_alternatives(self, n, m, dataset_name='', **kwargs):
trajectories_with_alternatives = list()
for _ in trange(n, desc='Processing Trajectories'):
trajectory = self.map.get_random_trajectory()
alternatives, labels = self.generate_n_alternatives(trajectory, m, dataset_name=dataset_name, **kwargs)
trajectories_with_alternatives.append(dict(trajectory=trajectory, alternatives=alternatives, labels=labels))
return trajectories_with_alternatives
def generate_alternatives(self, trajectory, output: Union[mp.
Queue, None] = None, mode='one_patching'):
start, dest = trajectory.endpoints
if mode == 'one_patching':
patch = self.map.get_valid_position()
alternative = self.map.get_trajectory_from_vertices(start, patch, dest)
else:
raise RuntimeError(f'mode checking went wrong...')
if output:
output.put(alternative)
return alternative
def generate_n_alternatives(self, trajectory, n, dataset_name: Union[str, Path] = '',
mode='one_patching', equal_samples=True):
assert mode in self.possible_modes, f'Parameter "mode" must be either {self.possible_modes}, but was {mode}.'
# Define an output queue
output = mp.Queue()
# Setup a list of processes that we want to run
processes = [mp.Process(target=self.generate_alternatives,
kwargs=dict(trajectory=trajectory, output=output, mode=mode))
for _ in range(n)]
# Run processes
for p in processes:
p.start()
# Exit the completed processes
for p in processes:
p.join()
# Get process results from the output queue
results = [output.get() for _ in processes]
# label per homotopic class
homotopy_classes = defaultdict(list)
homotopy_classes[0].append(trajectory)
for i in range(len(results)):
alternative = results[i]
class_not_found, label = True, None
# check for homotopy class
for label in homotopy_classes.keys():
if self.map.are_homotopic(homotopy_classes[label][0], alternative):
homotopy_classes[label].append(alternative)
class_not_found = False
break
if class_not_found:
label = len(homotopy_classes)
homotopy_classes[label].append(alternative)
# There should be as much homotopic samples as non-homotopic samples
if equal_samples:
homotopy_classes = self._remove_unequal(homotopy_classes)
# Compose lists of alternatives with labels
alternatives, labels = list(), list()
for key in homotopy_classes.keys():
alternatives.extend([homotopy_classes[key]])
labels.extend([key] * len(homotopy_classes[key]))
# Write to disk
if dataset_name:
self.write_to_disk(dataset_name, trajectory, alternatives, labels)
# Return
return alternatives, labels
def write_to_disk(self, filepath, trajectory, alternatives, labels):
dataset_name = filepath if filepath.endswith('.pik') else f'{filepath}.pik'
self.data_root.mkdir(exist_ok=True, parents=True)
with shelve.open(str(self.data_root / dataset_name), protocol=pickle.HIGHEST_PROTOCOL) as f:
new_key = len(f)
f[f'trajectory_{new_key}'] = dict(alternatives=alternatives,
trajectory=trajectory,
labels=labels)
if 'map' not in f:
f['map'] = dict(map=self.map, name=f'map_{self.map.name}')
@staticmethod
def _remove_unequal(hom_dict):
hom_dict = hom_dict.copy()
counter = len(hom_dict)
while sum([len(hom_dict[class_id]) for class_id in range(len(hom_dict))]) > len(hom_dict[0]):
if counter > len(hom_dict):
counter = len(hom_dict)
if counter in hom_dict:
if len(hom_dict[counter]) == 0:
del hom_dict[counter]
else:
del hom_dict[counter][-1]
counter -= 1
return hom_dict

View File

View File

View File

@@ -0,0 +1,26 @@
from pathlib import Path
import matplotlib.pyplot as plt
class Plotter(object):
def __init__(self, root_path=''):
self.root_path = Path(root_path)
def save_current_figure(self, path, extention='.png'):
fig, _ = plt.gcf(), plt.gca()
# Prepare save location and check img file extention
path = self.root_path / Path(path if str(path).endswith(extention) else f'{str(path)}{extention}')
path.parent.mkdir(exist_ok=True, parents=True)
fig.savefig(path)
fig.clf()
def show_current_figure(self):
fig, _ = plt.gcf(), plt.gca()
fig.show()
fig.clf()
if __name__ == '__main__':
output_root = Path('..') / 'output'
p = Plotter(output_root)
p.save_current_figure('test.png')