Variational Generator
This commit is contained in:
@ -25,59 +25,33 @@ class CNNRouteGeneratorModel(LightningBaseModule):
|
||||
return Adam(self.parameters(), lr=self.hparams.train_param.lr)
|
||||
|
||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||
batch_x, label = batch_xy
|
||||
|
||||
generated_alternative, z, mu, logvar = self(batch_x + [label, ])
|
||||
map_array, trajectory = batch_x
|
||||
|
||||
map_stack = torch.cat((map_array, trajectory, generated_alternative), dim=1)
|
||||
pred_label = self.discriminator(map_stack)
|
||||
|
||||
discriminated_bce_loss = self.criterion(pred_label, label.float().unsqueeze(-1))
|
||||
|
||||
batch_x, alternative = batch_xy
|
||||
generated_alternative, z, mu, logvar = self(batch_x)
|
||||
mse_loss = self.criterion(generated_alternative, alternative)
|
||||
# see Appendix B from VAE paper:
|
||||
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
|
||||
# https://arxiv.org/abs/1312.6114
|
||||
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
|
||||
kld_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
||||
# Dimensional Resizing
|
||||
# Dimensional Resizing TODO: Does This make sense? Sanity Check it!
|
||||
kld_loss /= reduce(mul, self.in_shape)
|
||||
|
||||
loss = (kld_loss + discriminated_bce_loss) / 2
|
||||
return dict(loss=loss, log=dict(loss=loss,
|
||||
discriminated_bce_loss=discriminated_bce_loss,
|
||||
kld_loss=kld_loss)
|
||||
)
|
||||
loss = (kld_loss + mse_loss) / 2
|
||||
return dict(loss=loss, log=dict(loss=loss, mse_loss=mse_loss, kld_loss=kld_loss))
|
||||
|
||||
def _test_val_step(self, batch_xy, batch_nb, *args):
|
||||
batch_x, label = batch_xy
|
||||
batch_x, alternative = batch_xy
|
||||
map_array, trajectory, label = batch_x
|
||||
|
||||
generated_alternative, z, mu, logvar = self(batch_x + [label, ])
|
||||
map_array, trajectory = batch_x
|
||||
generated_alternative, z, mu, logvar = self(batch_x)
|
||||
|
||||
map_stack = torch.cat((map_array, trajectory, generated_alternative), dim=1)
|
||||
pred_label = self.discriminator(map_stack)
|
||||
|
||||
discriminated_bce_loss = self.criterion(pred_label, label.float().unsqueeze(-1))
|
||||
return dict(discriminated_bce_loss=discriminated_bce_loss, batch_nb=batch_nb,
|
||||
pred_label=pred_label, label=label, generated_alternative=generated_alternative)
|
||||
|
||||
def validation_step(self, *args):
|
||||
return self._test_val_step(*args)
|
||||
|
||||
def validation_epoch_end(self, outputs: list):
|
||||
return self._test_val_epoch_end(outputs)
|
||||
return dict(batch_nb=batch_nb, label=label, generated_alternative=generated_alternative, pred_label=-1)
|
||||
|
||||
def _test_val_epoch_end(self, outputs, test=False):
|
||||
evaluation = ROCEvaluation(plot_roc=True)
|
||||
pred_label = torch.cat([x['pred_label'] for x in outputs])
|
||||
labels = torch.cat([x['label'] for x in outputs]).unsqueeze(1)
|
||||
mean_losses = torch.stack([x['discriminated_bce_loss'] for x in outputs]).mean()
|
||||
|
||||
# Sci-py call ROC eval call is eval(true_label, prediction)
|
||||
roc_auc, tpr, fpr = evaluation(labels.cpu().numpy(), pred_label.cpu().numpy(), )
|
||||
labels = torch.cat([x['label'] for x in outputs]).unsqueeze(1)
|
||||
|
||||
if test:
|
||||
# self.logger.log_metrics(score_dict)
|
||||
self.logger.log_image(f'{self.name}_ROC-Curve', plt.gcf())
|
||||
plt.clf()
|
||||
maps, trajectories, labels, val_restul_dict = self.generate_random()
|
||||
@ -87,7 +61,13 @@ class CNNRouteGeneratorModel(LightningBaseModule):
|
||||
fig = g.draw()
|
||||
self.logger.log_image(f'{self.name}_Output', fig)
|
||||
|
||||
return dict(mean_losses=mean_losses, roc_auc=roc_auc, epoch=self.current_epoch)
|
||||
return dict(epoch=self.current_epoch)
|
||||
|
||||
def validation_step(self, *args):
|
||||
return self._test_val_step(*args)
|
||||
|
||||
def validation_epoch_end(self, outputs: list):
|
||||
return self._test_val_epoch_end(outputs)
|
||||
|
||||
def test_step(self, *args):
|
||||
return self._test_val_step(*args)
|
||||
@ -95,31 +75,20 @@ class CNNRouteGeneratorModel(LightningBaseModule):
|
||||
def test_epoch_end(self, outputs):
|
||||
return self._test_val_epoch_end(outputs, test=True)
|
||||
|
||||
|
||||
@property
|
||||
def discriminator(self):
|
||||
if self._disc is None:
|
||||
raise RuntimeError('Set the Discriminator first; "set_discriminator(disc_model)')
|
||||
return self._disc
|
||||
|
||||
def set_discriminator(self, disc_model):
|
||||
if self._disc is not None:
|
||||
raise RuntimeError('Discriminator has already been set... What are trying to do?')
|
||||
self._disc = disc_model
|
||||
|
||||
def __init__(self, *params):
|
||||
def __init__(self, *params, issubclassed=False):
|
||||
super(CNNRouteGeneratorModel, self).__init__(*params)
|
||||
|
||||
# Dataset
|
||||
self.dataset = TrajData(self.hparams.data_param.map_root, mode='just_route',
|
||||
length=self.hparams.data_param.dataset_length)
|
||||
if not issubclassed:
|
||||
# Dataset
|
||||
self.dataset = TrajData(self.hparams.data_param.map_root, mode='separated_arrays',
|
||||
length=self.hparams.data_param.dataset_length)
|
||||
self.criterion = nn.MSELoss()
|
||||
|
||||
# Additional Attributes
|
||||
self.in_shape = self.dataset.map_shapes_max
|
||||
# Todo: Better naming and size in Parameters
|
||||
self.feature_dim = 10
|
||||
self.lat_dim = self.feature_dim + self.feature_dim + 1
|
||||
self._disc = None
|
||||
|
||||
# NN Nodes
|
||||
###################################################
|
||||
@ -127,7 +96,6 @@ class CNNRouteGeneratorModel(LightningBaseModule):
|
||||
# Utils
|
||||
self.relu = nn.ReLU()
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
self.criterion = nn.MSELoss()
|
||||
|
||||
#
|
||||
# Map Encoder
|
||||
@ -222,7 +190,7 @@ class CNNRouteGeneratorModel(LightningBaseModule):
|
||||
alt_tensor = self.alt_deconv_2(alt_tensor)
|
||||
alt_tensor = self.alt_deconv_3(alt_tensor)
|
||||
alt_tensor = self.alt_deconv_out(alt_tensor)
|
||||
alt_tensor = self.sigmoid(alt_tensor)
|
||||
# alt_tensor = self.sigmoid(alt_tensor)
|
||||
return alt_tensor
|
||||
|
||||
def encode(self, map_array, trajectory, label):
|
||||
@ -266,4 +234,100 @@ class CNNRouteGeneratorModel(LightningBaseModule):
|
||||
maps = self._move_to_model_device(torch.stack(maps))
|
||||
|
||||
labels = self._move_to_model_device(torch.as_tensor([0] * n + [1] * n))
|
||||
return maps, trajectories, labels, self._test_val_step(([maps, trajectories], labels), -9999)
|
||||
return maps, trajectories, labels, self._test_val_step(((maps, trajectories, labels), None), -9999)
|
||||
|
||||
|
||||
class CNNRouteGeneratorDiscriminated(CNNRouteGeneratorModel):
|
||||
|
||||
name = 'CNNRouteGeneratorDiscriminated'
|
||||
|
||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||
batch_x, label = batch_xy
|
||||
|
||||
generated_alternative, z, mu, logvar = self(batch_x)
|
||||
map_array, trajectory = batch_x
|
||||
|
||||
map_stack = torch.cat((map_array, trajectory, generated_alternative), dim=1)
|
||||
pred_label = self.discriminator(map_stack)
|
||||
discriminated_bce_loss = self.criterion(pred_label, label.float().unsqueeze(-1))
|
||||
|
||||
# see Appendix B from VAE paper:
|
||||
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
|
||||
# https://arxiv.org/abs/1312.6114
|
||||
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
|
||||
kld_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
||||
# Dimensional Resizing
|
||||
kld_loss /= reduce(mul, self.in_shape)
|
||||
|
||||
loss = (kld_loss + discriminated_bce_loss) / 2
|
||||
return dict(loss=loss, log=dict(loss=loss,
|
||||
discriminated_bce_loss=discriminated_bce_loss,
|
||||
kld_loss=kld_loss)
|
||||
)
|
||||
|
||||
def _test_val_step(self, batch_xy, batch_nb, *args):
|
||||
batch_x, label = batch_xy
|
||||
|
||||
generated_alternative, z, mu, logvar = self(batch_x)
|
||||
map_array, trajectory = batch_x
|
||||
|
||||
map_stack = torch.cat((map_array, trajectory, generated_alternative), dim=1)
|
||||
pred_label = self.discriminator(map_stack)
|
||||
|
||||
discriminated_bce_loss = self.criterion(pred_label, label.float().unsqueeze(-1))
|
||||
return dict(discriminated_bce_loss=discriminated_bce_loss, batch_nb=batch_nb,
|
||||
pred_label=pred_label, label=label, generated_alternative=generated_alternative)
|
||||
|
||||
def validation_step(self, *args):
|
||||
return self._test_val_step(*args)
|
||||
|
||||
def validation_epoch_end(self, outputs: list):
|
||||
return self._test_val_epoch_end(outputs)
|
||||
|
||||
def _test_val_epoch_end(self, outputs, test=False):
|
||||
evaluation = ROCEvaluation(plot_roc=True)
|
||||
pred_label = torch.cat([x['pred_label'] for x in outputs])
|
||||
labels = torch.cat([x['label'] for x in outputs]).unsqueeze(1)
|
||||
mean_losses = torch.stack([x['discriminated_bce_loss'] for x in outputs]).mean()
|
||||
|
||||
# Sci-py call ROC eval call is eval(true_label, prediction)
|
||||
roc_auc, tpr, fpr = evaluation(labels.cpu().numpy(), pred_label.cpu().numpy(), )
|
||||
if test:
|
||||
# self.logger.log_metrics(score_dict)
|
||||
self.logger.log_image(f'{self.name}_ROC-Curve', plt.gcf())
|
||||
plt.clf()
|
||||
maps, trajectories, labels, val_restul_dict = self.generate_random()
|
||||
|
||||
from lib.visualization.generator_eval import GeneratorVisualizer
|
||||
g = GeneratorVisualizer(maps, trajectories, labels, val_restul_dict)
|
||||
fig = g.draw()
|
||||
self.logger.log_image(f'{self.name}_Output', fig)
|
||||
|
||||
return dict(mean_losses=mean_losses, roc_auc=roc_auc, epoch=self.current_epoch)
|
||||
|
||||
def test_step(self, *args):
|
||||
return self._test_val_step(*args)
|
||||
|
||||
def test_epoch_end(self, outputs):
|
||||
return self._test_val_epoch_end(outputs, test=True)
|
||||
|
||||
@property
|
||||
def discriminator(self):
|
||||
if self._disc is None:
|
||||
raise RuntimeError('Set the Discriminator first; "set_discriminator(disc_model)')
|
||||
return self._disc
|
||||
|
||||
def set_discriminator(self, disc_model):
|
||||
if self._disc is not None:
|
||||
raise RuntimeError('Discriminator has already been set... What are trying to do?')
|
||||
self._disc = disc_model
|
||||
|
||||
def __init__(self, *params):
|
||||
super(CNNRouteGeneratorDiscriminated, self).__init__(*params, issubclassed=True)
|
||||
|
||||
self._disc = None
|
||||
|
||||
self.criterion = nn.BCELoss()
|
||||
|
||||
self.dataset = TrajData(self.hparams.data_param.map_root, mode='just_route',
|
||||
length=self.hparams.data_param.dataset_length)
|
||||
|
@ -32,24 +32,35 @@ class ConvHomDetector(LightningBaseModule):
|
||||
pred_y = self(batch_x)
|
||||
return dict(prediction=pred_y, label=batch_y, batch_nb=batch_nb)
|
||||
|
||||
def validation_step(self, batch_xy, batch_nb, **kwargs):
|
||||
batch_x, batch_y = batch_xy
|
||||
pred_y = self(batch_x)
|
||||
return dict(prediction=pred_y, label=batch_y, batch_nb=batch_nb)
|
||||
|
||||
def test_epoch_end(self, outputs):
|
||||
evaluation = ROCEvaluation(plot_roc=True)
|
||||
return self._val_test_end(outputs)
|
||||
|
||||
def validation_epoch_end(self, outputs: list):
|
||||
return self._val_test_end(outputs)
|
||||
|
||||
def _val_test_end(self, outputs, test=True):
|
||||
evaluation = ROCEvaluation(plot_roc=True if test else False)
|
||||
predictions = torch.cat([x['prediction'] for x in outputs])
|
||||
labels = torch.cat([x['label'] for x in outputs]).unsqueeze(1)
|
||||
|
||||
# Sci-py call ROC eval call is eval(true_label, prediction)
|
||||
roc_auc, tpr, fpr = evaluation(labels.cpu().numpy(), predictions.cpu().numpy(), )
|
||||
score_dict = dict(roc_auc=roc_auc)
|
||||
roc_auc, tpr, fpr = evaluation(labels.cpu().numpy(), predictions.cpu().numpy())
|
||||
# self.logger.log_metrics(score_dict)
|
||||
self.logger.log_image(f'{self.name}', plt.gcf())
|
||||
if test:
|
||||
self.logger.log_image(f'{self.name}', plt.gcf())
|
||||
|
||||
return dict(log=score_dict)
|
||||
return dict(score=roc_auc, log=dict(roc_auc=roc_auc))
|
||||
|
||||
def __init__(self, hparams):
|
||||
super(ConvHomDetector, self).__init__(hparams)
|
||||
|
||||
# Dataset
|
||||
self.dataset = TrajData(self.hparams.data_param.map_root, mode='all_in_map')
|
||||
self.dataset = TrajData(self.hparams.data_param.map_root, mode='all_in_map', )
|
||||
|
||||
# Additional Attributes
|
||||
self.map_shape = self.dataset.map_shapes_max
|
||||
@ -59,6 +70,7 @@ class ConvHomDetector(LightningBaseModule):
|
||||
assert len(self.in_shape) == 3, f'Image or map shape has to have 3 dims, but had: {len(self.in_shape)}'
|
||||
self.criterion = nn.BCELoss()
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
# NN Nodes
|
||||
# ============================
|
||||
@ -100,6 +112,7 @@ class ConvHomDetector(LightningBaseModule):
|
||||
tensor = self.map_conv_3(tensor)
|
||||
tensor = self.flatten(tensor)
|
||||
tensor = self.linear(tensor)
|
||||
tensor = self.relu(tensor)
|
||||
tensor = self.classifier(tensor)
|
||||
tensor = self.sigmoid(tensor)
|
||||
return tensor
|
||||
|
@ -17,7 +17,7 @@ class ConvModule(nn.Module):
|
||||
output = self(x)
|
||||
return output.shape[1:]
|
||||
|
||||
def __init__(self, in_shape, activation: nn.Module = nn.ELU, pooling_size=None, use_bias=True, use_norm=True,
|
||||
def __init__(self, in_shape, activation: nn.Module = nn.ELU, pooling_size=None, use_bias=True, use_norm=False,
|
||||
dropout: Union[int, float] = 0, conv_class=nn.Conv2d,
|
||||
conv_filters=64, conv_kernel=5, conv_stride=1, conv_padding=0):
|
||||
super(ConvModule, self).__init__()
|
||||
|
@ -154,7 +154,7 @@ class LightningBaseModule(pl.LightningModule, ABC):
|
||||
|
||||
# Validation Dataloader
|
||||
def val_dataloader(self):
|
||||
return DataLoader(dataset=self.dataset.val_dataset, shuffle=False,
|
||||
return DataLoader(dataset=self.dataset.val_dataset, shuffle=True,
|
||||
batch_size=self.hparams.train_param.batch_size,
|
||||
num_workers=self.hparams.data_param.worker)
|
||||
|
||||
|
@ -18,10 +18,6 @@ import lib.variables as V
|
||||
|
||||
class Map(object):
|
||||
|
||||
# This setting is for Img mode "L" aka GreyScale Image; values: 0-255
|
||||
white = 255
|
||||
black = 0
|
||||
|
||||
def __copy__(self):
|
||||
return copy.deepcopy(self)
|
||||
|
||||
@ -51,6 +47,7 @@ class Map(object):
|
||||
|
||||
def __init__(self, name='', array_like_map_representation=None):
|
||||
if array_like_map_representation is not None:
|
||||
array_like_map_representation = array_like_map_representation.astype(np.float32)
|
||||
if array_like_map_representation.ndim == 2:
|
||||
array_like_map_representation = np.expand_dims(array_like_map_representation, axis=0)
|
||||
assert array_like_map_representation.ndim == 3
|
||||
@ -70,7 +67,7 @@ class Map(object):
|
||||
|
||||
# Check pixels for their color (determine if walkable)
|
||||
for idx, value in np.ndenumerate(self.map_array):
|
||||
if value != self.black:
|
||||
if value != V.BLACK:
|
||||
# IF walkable, add node
|
||||
graph.add_node(idx, count=0)
|
||||
# Fully connect to all surrounding neighbors
|
||||
@ -91,10 +88,9 @@ class Map(object):
|
||||
if image.mode != 'L':
|
||||
image = image.convert('L')
|
||||
map_array = np.expand_dims(np.array(image), axis=0)
|
||||
map_array = np.where(np.asarray(map_array) == cls.white, 1, 0)
|
||||
if embedding_size:
|
||||
assert isinstance(embedding_size, tuple), f'embedding_size was of type: {type(embedding_size)}'
|
||||
embedding = np.zeros(embedding_size)
|
||||
embedding = np.full(embedding_size, V.BLACK)
|
||||
embedding[:map_array.shape[0], :map_array.shape[1], :map_array.shape[2]] = map_array
|
||||
map_array = embedding
|
||||
|
||||
@ -146,12 +142,15 @@ class Map(object):
|
||||
polyline = trajectory.xy_vertices
|
||||
polyline.extend(reversed(other_trajectory.xy_vertices))
|
||||
|
||||
img = Image.new('L', (self.height, self.width), 0)
|
||||
img = Image.new('L', (self.height, self.width), color=V.WHITE)
|
||||
draw = ImageDraw.Draw(img)
|
||||
|
||||
draw.polygon(polyline, outline=1, fill=1)
|
||||
draw.polygon(polyline, outline=V.BLACK, fill=V.BLACK)
|
||||
|
||||
a = (np.asarray(img) * np.where(self.as_2d_array == self.black, 1, 0)).sum()
|
||||
binary_img = np.where(np.asarray(img).squeeze() == V.BLACK, 1, 0)
|
||||
binary_map = np.where(self.as_2d_array == V.BLACK, 1, 0)
|
||||
|
||||
a = (binary_img * binary_map).sum()
|
||||
|
||||
if a:
|
||||
return V.ALTERNATIVE # Non-Homotoph
|
||||
|
@ -42,9 +42,9 @@ class Trajectory(object):
|
||||
return list(zip(self._vertices[:-1], self._vertices[1:]))
|
||||
|
||||
def draw_in_array(self, shape):
|
||||
trajectory_space = np.zeros(shape)
|
||||
trajectory_space = np.zeros(shape).astype(np.float32)
|
||||
for index in self.vertices:
|
||||
trajectory_space[index] = 1
|
||||
trajectory_space[index] = V.WHITE
|
||||
return trajectory_space
|
||||
|
||||
@property
|
||||
|
@ -5,7 +5,7 @@ from collections import defaultdict
|
||||
from configparser import ConfigParser
|
||||
from pathlib import Path
|
||||
|
||||
from lib.models.generators.cnn import CNNRouteGeneratorModel
|
||||
from lib.models.generators.cnn import CNNRouteGeneratorModel, CNNRouteGeneratorDiscriminated
|
||||
from lib.models.homotopy_classification.cnn_based import ConvHomDetector
|
||||
from lib.utils.model_io import ModelParameters
|
||||
|
||||
@ -28,7 +28,10 @@ class Config(ConfigParser):
|
||||
|
||||
@property
|
||||
def model_class(self):
|
||||
model_dict = dict(classifier_cnn=ConvHomDetector, generator_cnn=CNNRouteGeneratorModel)
|
||||
model_dict = dict(ConvHomDetector=ConvHomDetector,
|
||||
CNNRouteGenerator=CNNRouteGeneratorModel,
|
||||
CNNRouteGeneratorDiscriminated=CNNRouteGeneratorDiscriminated
|
||||
)
|
||||
try:
|
||||
return model_dict[self.get('model', 'type')]
|
||||
except KeyError as e:
|
||||
|
@ -3,3 +3,5 @@ _ROOT = Path('..')
|
||||
|
||||
HOMOTOPIC = 1
|
||||
ALTERNATIVE = 0
|
||||
WHITE = 255
|
||||
BLACK = 0
|
||||
|
Reference in New Issue
Block a user