train running dataset fixed
This commit is contained in:
@@ -11,6 +11,7 @@ from datasets.trajectory_dataset import TrajData
|
||||
from lib.evaluation.classification import ROCEvaluation
|
||||
from lib.modules.utils import LightningBaseModule, Flatten
|
||||
from lib.modules.blocks import ConvModule, ResidualModule
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
class ConvHomDetector(LightningBaseModule):
|
||||
@@ -36,10 +37,9 @@ class ConvHomDetector(LightningBaseModule):
|
||||
predictions = torch.stack([x['prediction'] for x in outputs])
|
||||
labels = torch.stack([x['label'] for x in outputs])
|
||||
|
||||
scores = evaluation(predictions.numpy(), labels.numpy())
|
||||
self.logger.log_metrics()
|
||||
|
||||
|
||||
scores = evaluation(predictions.numpy(), labels.numpy(), )
|
||||
self.logger.log_metrics({key:value for key, value in zip(['roc_auc', 'tpr', 'fpr'], scores)})
|
||||
self.logger.log_image(f'{self.name}', plt.gcf())
|
||||
pass
|
||||
|
||||
def __init__(self, *params):
|
||||
@@ -88,6 +88,19 @@ class ConvHomDetector(LightningBaseModule):
|
||||
self.classifier = nn.Linear(self.hparams.model_param.classes * 10, 1) # self.hparams.model_param.classes)
|
||||
self.out_activation = nn.Sigmoid() # nn.Softmax
|
||||
|
||||
def forward(self, x):
|
||||
tensor = self.map_conv_0(x)
|
||||
tensor = self.map_res_1(tensor)
|
||||
tensor = self.map_conv_1(tensor)
|
||||
tensor = self.map_res_2(tensor)
|
||||
tensor = self.map_conv_2(tensor)
|
||||
tensor = self.map_conv_3(tensor)
|
||||
tensor = self.flatten(tensor)
|
||||
tensor = self.linear(tensor)
|
||||
tensor = self.classifier(tensor)
|
||||
tensor = self.out_activation(tensor)
|
||||
return tensor
|
||||
|
||||
# Dataloaders
|
||||
# ================================================================================
|
||||
# Train Dataloader
|
||||
@@ -107,16 +120,3 @@ class ConvHomDetector(LightningBaseModule):
|
||||
return DataLoader(dataset=self.dataset.val_dataset, shuffle=True,
|
||||
batch_size=self.hparams.data_param.batchsize,
|
||||
num_workers=self.hparams.data_param.worker)
|
||||
|
||||
def forward(self, x):
|
||||
tensor = self.map_conv_0(x)
|
||||
tensor = self.map_res_1(tensor)
|
||||
tensor = self.map_conv_1(tensor)
|
||||
tensor = self.map_res_2(tensor)
|
||||
tensor = self.map_conv_2(tensor)
|
||||
tensor = self.map_conv_3(tensor)
|
||||
tensor = self.flatten(tensor)
|
||||
tensor = self.linear(tensor)
|
||||
tensor = self.classifier(tensor)
|
||||
tensor = self.out_activation(tensor)
|
||||
return tensor
|
||||
|
||||
@@ -45,7 +45,7 @@ class Map(object):
|
||||
|
||||
@property
|
||||
def as_2d_array(self):
|
||||
return self.map_array[1:]
|
||||
return self.map_array.squeeze()
|
||||
|
||||
def __init__(self, name='', array_like_map_representation=None):
|
||||
if array_like_map_representation is not None:
|
||||
@@ -145,9 +145,9 @@ class Map(object):
|
||||
|
||||
img = Image.new('L', (self.height, self.width), 0)
|
||||
draw = ImageDraw.Draw(img)
|
||||
draw.polygon(polyline, outline=255, fill=255)
|
||||
draw.polygon(polyline, outline=1, fill=1)
|
||||
|
||||
a = (np.asarray(img) * np.where(self.as_2d_array == self.white, 0, 1)).sum()
|
||||
a = (np.where(np.asarray(img) == self.white, 1, 0) * np.where(self.as_2d_array == self.white, 1, 0)).sum()
|
||||
|
||||
if a:
|
||||
return False # Non-Homotoph
|
||||
@@ -159,7 +159,7 @@ class Map(object):
|
||||
# The standard colormaps also all have reversed versions.
|
||||
# They have the same names with _r tacked on to the end.
|
||||
# https: // matplotlib.org / api / pyplot_summary.html?highlight = colormaps
|
||||
img = ax.imshow(self.as_array, cmap='Greys_r')
|
||||
img = ax.imshow(self.as_2d_array, cmap='Greys_r')
|
||||
return dict(img=img, fig=fig, ax=ax)
|
||||
|
||||
|
||||
|
||||
@@ -14,7 +14,7 @@ class Trajectory(object):
|
||||
|
||||
@property
|
||||
def xy_vertices(self):
|
||||
return [(x,y) for _, x,y in self._vertices]
|
||||
return [(x, y) for _, y, x in self._vertices]
|
||||
|
||||
@property
|
||||
def endpoints(self):
|
||||
@@ -30,11 +30,11 @@ class Trajectory(object):
|
||||
|
||||
@property
|
||||
def xs(self):
|
||||
return [x[1] for x in self._vertices]
|
||||
return [x[2] for x in self._vertices]
|
||||
|
||||
@property
|
||||
def ys(self):
|
||||
return [x[0] for x in self._vertices]
|
||||
return [x[1] for x in self._vertices]
|
||||
|
||||
@property
|
||||
def as_paired_list(self):
|
||||
@@ -59,7 +59,7 @@ class Trajectory(object):
|
||||
kwargs.update(color='red' if label == V.HOMOTOPIC else 'green',
|
||||
label='Homotopic' if label == V.HOMOTOPIC else 'Alternative')
|
||||
if highlights:
|
||||
kwargs.update(marker='bo')
|
||||
kwargs.update(marker='o')
|
||||
fig, ax = plt.gcf(), plt.gca()
|
||||
img = plt.plot(self.xs, self.ys, **kwargs)
|
||||
return dict(img=img, fig=fig, ax=ax)
|
||||
|
||||
@@ -76,7 +76,7 @@ class Logger(LightningLoggerBase):
|
||||
self.neptunelogger.close()
|
||||
|
||||
def log_config_as_ini(self):
|
||||
self.config.write(self.log_dir)
|
||||
self.config.write(self.log_dir / 'config.ini')
|
||||
|
||||
def log_metric(self, metric_name, metric_value, **kwargs):
|
||||
self.testtubelogger.log_metrics(dict(metric_name=metric_value))
|
||||
@@ -91,8 +91,8 @@ class Logger(LightningLoggerBase):
|
||||
self.neptunelogger.save()
|
||||
|
||||
def finalize(self, status):
|
||||
self.testtubelogger.finalize()
|
||||
self.neptunelogger.finalize()
|
||||
self.testtubelogger.finalize(status)
|
||||
self.neptunelogger.finalize(status)
|
||||
self.log_config_as_ini()
|
||||
|
||||
def __enter__(self):
|
||||
|
||||
Reference in New Issue
Block a user