Files
entrix_case_challange/forecasting_model/train/classic.py
2025-05-03 20:46:14 +02:00

277 lines
14 KiB
Python

"""
Classic training routine: Train on initial data segment, validate and test on final segments.
"""
import logging
import time
from pathlib import Path
import pandas as pd
import torch
import yaml
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint, LearningRateMonitor
from pytorch_lightning.loggers import CSVLogger
from typing import Dict, Optional
from forecasting_model.utils.forecast_config_model import MainConfig
from forecasting_model.data_processing import prepare_fold_data_and_loaders, split_data_classic
from forecasting_model.train.model import LSTMForecastLightningModule
from forecasting_model.evaluation import evaluate_fold_predictions
from forecasting_model.utils.helper import save_results
from forecasting_model.io.plotting import plot_loss_curve_from_csv
logger = logging.getLogger(__name__)
def run_classic_training(
config: MainConfig,
full_df: pd.DataFrame,
output_base_dir: Path
) -> Optional[Dict[str, float]]:
"""
Runs a single training pipeline using a classic train/val/test split.
Args:
config: The main configuration object.
full_df: The complete raw DataFrame.
output_base_dir: The base directory where general outputs are saved.
Classic results will be saved in a subdirectory.
Returns:
A dictionary containing test metrics (e.g., {'MAE': ..., 'RMSE': ...})
for the classic run, or None if it fails.
"""
run_start_time = time.perf_counter()
logger.info("--- Starting Classic Training Run ---")
# Define a specific output directory for this run
classic_output_dir = output_base_dir / "classic_run"
classic_output_dir.mkdir(parents=True, exist_ok=True)
logger.info(f"Classic run outputs will be saved to: {classic_output_dir}")
test_metrics: Optional[Dict[str, float]] = None
best_val_score: Optional[float] = None
best_model_path: Optional[str] = None
try:
# --- Data Splitting ---
logger.info("Splitting data into classic train/val/test sets...")
n_samples = len(full_df)
val_frac = config.cross_validation.val_size_fraction
test_frac = config.cross_validation.test_size_fraction
train_idx, val_idx, test_idx = split_data_classic(n_samples, val_frac, test_frac)
# Store test datetime index for evaluation plotting
test_datetime_index = full_df.iloc[test_idx].index
# --- Data Preparation ---
logger.info("Preparing data loaders for the classic split...")
train_loader, val_loader, test_loader, target_scaler, input_size = prepare_fold_data_and_loaders(
full_df=full_df,
train_idx=train_idx,
val_idx=val_idx,
test_idx=test_idx,
target_col=config.data.target_col,
feature_config=config.features,
train_config=config.training,
eval_config=config.evaluation
)
logger.info(f"Data loaders prepared. Input size determined: {input_size}")
# Save artifacts specific to this run if needed (e.g., for later inference)
torch.save(test_loader, classic_output_dir / "classic_test_loader.pt")
torch.save(target_scaler, classic_output_dir / "classic_target_scaler.pt")
torch.save(input_size, classic_output_dir / "classic_input_size.pt")
# Save config for this run
try: config_dump = config.model_dump()
except AttributeError: config_dump = config.model_dump()
with open(classic_output_dir / "config.yaml", 'w') as f:
yaml.dump(config_dump, f, default_flow_style=False)
# --- Model Initialization ---
model = LSTMForecastLightningModule(
model_config=config.model,
train_config=config.training,
input_size=input_size,
target_scaler=target_scaler
)
logger.info("Classic LSTMForecastLightningModule initialized.")
# --- PyTorch Lightning Callbacks ---
monitor_metric = "val_MeanAbsoluteError" # Monitor same metric as CV folds
monitor_mode = "min"
early_stop_callback = None
if config.training.early_stopping_patience is not None and config.training.early_stopping_patience > 0:
early_stop_callback = EarlyStopping(
monitor=monitor_metric, min_delta=0.0001,
patience=config.training.early_stopping_patience, verbose=True, mode=monitor_mode
)
logger.info(f"Enabled EarlyStopping: monitor='{monitor_metric}', patience={config.training.early_stopping_patience}")
checkpoint_callback = ModelCheckpoint(
dirpath=classic_output_dir / "checkpoints",
filename="best_classic_model", # Simple filename
save_top_k=1, monitor=monitor_metric, mode=monitor_mode, verbose=True
)
logger.info(f"Enabled ModelCheckpoint: monitor='{monitor_metric}', mode='{monitor_mode}'")
lr_monitor = LearningRateMonitor(logging_interval='epoch')
callbacks = [checkpoint_callback, lr_monitor]
if early_stop_callback: callbacks.append(early_stop_callback)
# --- PyTorch Lightning Logger ---
pl_logger = CSVLogger(save_dir=str(classic_output_dir), name="training_logs")
logger.info(f"Using CSVLogger, logs will be saved in: {pl_logger.log_dir}")
# --- PyTorch Lightning Trainer ---
accelerator = 'gpu' if torch.cuda.is_available() else 'cpu'
devices = 1 if accelerator == 'gpu' else None
precision = getattr(config.training, 'precision', 32)
trainer = pl.Trainer(
accelerator=accelerator, devices=devices,
max_epochs=config.training.epochs,
callbacks=callbacks, logger=pl_logger,
log_every_n_steps=max(1, len(train_loader)//10),
enable_progress_bar=True,
gradient_clip_val=getattr(config.training, 'gradient_clip_val', None),
precision=precision,
)
logger.info(f"Initialized PyTorch Lightning Trainer: accelerator='{accelerator}', devices={devices}, precision={precision}")
# --- Training ---
logger.info("Starting classic model training...")
trainer.fit(model, train_dataloaders=train_loader, val_dataloaders=val_loader)
logger.info("Classic model training finished.")
# Store best validation score and path
best_val_score_tensor = trainer.checkpoint_callback.best_model_score
best_model_path = trainer.checkpoint_callback.best_model_path
best_val_score = best_val_score_tensor.item() if best_val_score_tensor is not None else None
if best_val_score is not None:
logger.info(f"Best validation score ({monitor_metric}): {best_val_score:.4f}")
logger.info(f"Best model checkpoint path: {best_model_path}")
else:
logger.warning(f"Could not retrieve best validation score/path (metric: {monitor_metric}). Evaluation might use last model.")
best_model_path = None
# --- Prediction on Test Set ---
logger.info("Starting prediction on classic test set using best checkpoint...")
prediction_results_list = trainer.predict(
ckpt_path=best_model_path if best_model_path else 'last',
dataloaders=test_loader
)
# --- Evaluation ---
if not prediction_results_list:
logger.error("Predict phase did not return any results for classic run.")
test_metrics = None
else:
try:
# Shapes: (n_samples, len(horizons))
all_preds_scaled = torch.cat([b['preds_scaled'] for b in prediction_results_list], dim=0).numpy()
n_predictions = len(all_preds_scaled) # Number of samples actually predicted
if 'targets_scaled' in prediction_results_list[0]:
all_targets_scaled = torch.cat([b['targets_scaled'] for b in prediction_results_list], dim=0).numpy()
if len(all_targets_scaled) != n_predictions:
logger.error(f"Classic Run: Mismatch between number of predictions ({n_predictions}) and targets ({len(all_targets_scaled)}).")
raise ValueError("Prediction and target count mismatch during classic evaluation.")
else:
raise ValueError("Targets missing from prediction results.")
logger.info(f"Processing {n_predictions} prediction results for classic test set...")
# --- Calculate Correct Time Index for Plotting (First Horizon) ---
target_time_index_for_plotting = None
if test_idx is not None and config.features.forecast_horizon:
try:
test_block_index = full_df.index[test_idx] # Use the test_idx from classic split
seq_len = config.features.sequence_length
first_horizon = config.features.forecast_horizon[0]
start_offset = seq_len + first_horizon - 1
if start_offset < len(test_block_index):
end_index = min(start_offset + n_predictions, len(test_block_index))
target_time_index_for_plotting = test_block_index[start_offset:end_index]
if len(target_time_index_for_plotting) != n_predictions:
logger.warning(f"Classic Run: Calculated target time index length ({len(target_time_index_for_plotting)}) "
f"does not match prediction count ({n_predictions}). Plotting x-axis might be misaligned.")
target_time_index_for_plotting = None
else:
logger.warning(f"Classic Run: Cannot calculate target time index, start offset ({start_offset}) "
f"exceeds test block length ({len(test_block_index)}).")
except Exception as e:
logger.error(f"Classic Run: Error calculating target time index for plotting: {e}", exc_info=True)
target_time_index_for_plotting = None # Ensure it's None if error occurs
else:
logger.warning(f"Classic Run: Skipping target time index calculation (missing test_idx or forecast_horizon).")
# --- End Index Calculation ---
# Use the classic run specific objects and config
test_metrics = evaluate_fold_predictions(
y_true_scaled=all_targets_scaled,
y_pred_scaled=all_preds_scaled,
target_scaler=target_scaler,
eval_config=config.evaluation,
fold_num=-1, # Indicate classic run
output_dir=str(classic_output_dir),
plot_subdir="plots",
prediction_time_index=target_time_index_for_plotting, # Pass the correctly calculated index
forecast_horizons=config.features.forecast_horizon,
plot_title_prefix="Classic Run"
)
# Save metrics
save_results({"overall_metrics": test_metrics}, classic_output_dir / "test_metrics.json")
logger.info(f"Classic run test metrics (overall): {test_metrics}")
# --- Plot Loss Curve for Classic Run ---
try:
# Adjusted logic to find metrics.csv inside potential version_*/ directories
classic_log_dir = classic_output_dir / "training_logs"
metrics_file = None
version_dirs = list(classic_log_dir.glob("version_*"))
if version_dirs:
# Assuming the latest version directory contains the relevant logs
latest_version_dir = max(version_dirs, key=lambda p: p.stat().st_mtime)
potential_metrics_file = latest_version_dir / "metrics.csv"
if potential_metrics_file.is_file():
metrics_file = potential_metrics_file
else:
logger.warning(f"Classic Run: metrics.csv not found in latest version directory: {latest_version_dir}")
else:
# Fallback if no version_* directories exist (less common with CSVLogger)
potential_metrics_file = classic_log_dir / "metrics.csv"
if potential_metrics_file.is_file():
metrics_file = potential_metrics_file
if metrics_file and metrics_file.is_file():
plot_loss_curve_from_csv(
metrics_csv_path=metrics_file,
output_path=classic_output_dir / "loss_curve.png",
title="Classic Run Training Progression",
train_loss_col='train_loss', # Changed from 'train_loss_epoch'
val_loss_col='val_loss' # Keep as 'val_loss'
)
logger.info(f"Generating loss curve for classic run from: {metrics_file}")
else:
logger.warning(f"Classic Run: Could not find metrics.csv in {classic_log_dir} or its version subdirectories for loss curve plot.")
except Exception as plot_e:
logger.error(f"Classic Run: Failed to generate loss curve plot: {plot_e}", exc_info=True)
# --- End Classic Loss Plotting ---
except (KeyError, ValueError, Exception) as e:
logger.error(f"Error processing classic prediction results: {e}", exc_info=True)
test_metrics = None
except Exception as e:
logger.error(f"An error occurred during the classic training pipeline: {e}", exc_info=True)
test_metrics = None # Indicate failure
finally:
if torch.cuda.is_available(): torch.cuda.empty_cache()
run_end_time = time.perf_counter()
logger.info(f"--- Finished Classic Training Run in {run_end_time - run_start_time:.2f} seconds ---")
return test_metrics