Files
entrix_case_challange/forecasting_model/model.py
2025-05-02 14:36:19 +02:00

292 lines
14 KiB
Python

import logging
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import pytorch_lightning as pl
import torchmetrics
from typing import Optional, Dict, Any, Union, List, Tuple
from sklearn.preprocessing import StandardScaler, MinMaxScaler
# Assuming config_model is in sibling directory utils/
from forecasting_model.utils.config_model import ModelConfig, TrainingConfig
logger = logging.getLogger(__name__)
class LSTMForecastLightningModule(pl.LightningModule):
"""
PyTorch Lightning Module for LSTM-based time series forecasting.
Encapsulates the model architecture, training, validation, and test logic.
Uses torchmetrics for efficient metric calculation.
"""
def __init__(
self,
model_config: ModelConfig,
train_config: TrainingConfig,
input_size: int,
target_scaler: Optional[Union[StandardScaler, MinMaxScaler]] = None,
):
super().__init__()
# --- Validate & Store Configs ---
# Validate the input_size passed during instantiation
if input_size <= 0:
raise ValueError("`input_size` must be provided as a positive integer during model instantiation.")
# Store the validated input_size directly for use in layer definitions
self._input_size = input_size # Use a temporary attribute before hparams are saved
# Ensure forecast_horizon is set in the config for the output layer
if not hasattr(model_config, 'forecast_horizon') or model_config.forecast_horizon is None or model_config.forecast_horizon <= 0:
raise ValueError("ModelConfig requires `forecast_horizon` to be set and positive.")
self.output_size = model_config.forecast_horizon
# Store configurations - input_size argument will be saved via save_hyperparameters
self.model_config = model_config
self.train_config = train_config
self.target_scaler = target_scaler # Store scaler for this fold
# Use save_hyperparameters() to automatically log configs and allow loading
# Pass input_size explicitly to be saved in hparams
# Exclude scaler as it's stateful and fold-specific
self.save_hyperparameters('model_config', 'train_config', 'input_size', ignore=['target_scaler'])
# --- Define Model Layers ---
# Access input_size via hparams now
self.lstm = nn.LSTM(
input_size=self.hparams.input_size,
hidden_size=self.hparams.model_config.hidden_size,
num_layers=self.hparams.model_config.num_layers,
batch_first=True, # Input shape: (batch, seq_len, features)
dropout=self.hparams.model_config.dropout if self.hparams.model_config.num_layers > 1 else 0.0
)
self.dropout = nn.Dropout(self.hparams.model_config.dropout)
# Output layer maps LSTM hidden state to the forecast horizon
# We typically take the output of the last time step
self.fc = nn.Linear(self.hparams.model_config.hidden_size, self.output_size)
# Optional residual connection handling
self.use_residual_skips = self.hparams.model_config.use_residual_skips
self.residual_projection = None
if self.use_residual_skips:
# If input size doesn't match hidden size, project input
if self.hparams.input_size != self.hparams.model_config.hidden_size:
# Use hparams.input_size here
self.residual_projection = nn.Linear(self.hparams.input_size, self.hparams.model_config.hidden_size)
logger.info("Residual connections enabled.")
if self.residual_projection:
logger.info("Residual projection layer added.")
# --- Define Loss Function ---
if self.hparams.train_config.loss_function.upper() == 'MSE':
self.criterion = nn.MSELoss()
elif self.hparams.train_config.loss_function.upper() == 'MAE':
self.criterion = nn.L1Loss()
else:
raise ValueError(f"Unsupported loss function: {self.hparams.train_config.loss_function}")
# --- Define Metrics (TorchMetrics) ---
metrics = torchmetrics.MetricCollection([
torchmetrics.MeanAbsoluteError(),
torchmetrics.MeanSquaredError(squared=False) # RMSE
])
self.train_metrics = metrics.clone(prefix='train_')
self.val_metrics = metrics.clone(prefix='val_')
self.test_metrics = metrics.clone(prefix='test_')
self.val_mae_original_scale = torchmetrics.MeanAbsoluteError()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass through the LSTM network.
Args:
x: Input tensor of shape (batch_size, sequence_length, input_size)
Returns:
Predictions tensor of shape (batch_size, forecast_horizon)
"""
# LSTM forward pass
lstm_out, (hidden, cell) = self.lstm(x) # Shape: (batch, seq_len, hidden_size)
# Output from the last time step
last_time_step_out = lstm_out[:, -1, :] # Shape: (batch_size, hidden_size)
# Apply dropout
last_time_step_out = self.dropout(last_time_step_out)
# Optional Residual Connection
if self.use_residual_skips:
residual = x[:, -1, :] # Input from the last time step: (batch_size, input_size)
if self.residual_projection:
residual = self.residual_projection(residual) # Project to hidden_size
last_time_step_out = last_time_step_out + residual
# Final fully connected layer
predictions = self.fc(last_time_step_out) # Shape: (batch_size, output_size/horizon)
return predictions # Shape: (batch_size, forecast_horizon)
def _calculate_loss(self, outputs, targets):
# Ensure shapes match before loss calculation
if outputs.shape != targets.shape:
# Squeeze potential extra dim: (batch, horizon, 1) -> (batch, horizon)
if outputs.ndim == targets.ndim + 1 and outputs.shape[-1] == 1:
outputs = outputs.squeeze(-1)
if outputs.shape != targets.shape:
raise ValueError(f"Output shape {outputs.shape} doesn't match target shape {targets.shape} for loss calculation.")
return self.criterion(outputs, targets)
def _inverse_transform(self, data: torch.Tensor) -> Optional[torch.Tensor]:
"""Helper to inverse transform data using the stored target scaler."""
if self.target_scaler is None:
# logger.warning("Cannot inverse transform: target_scaler not available.")
return None # Cannot inverse transform
# Scaler expects 2D input (N, 1)
# Ensure data is on CPU and is float64 for sklearn scaler typically
data_cpu = data.detach().cpu().numpy().astype(np.float64)
original_shape = data_cpu.shape
if data_cpu.ndim == 1:
data_flat = data_cpu.reshape(-1, 1)
elif data_cpu.ndim == 2: # (batch, horizon)
data_flat = data_cpu.reshape(-1, 1)
else:
logger.warning(f"Unexpected shape for inverse transform: {original_shape}. Reshaping to (-1, 1).")
data_flat = data_cpu.reshape(-1, 1)
try:
inversed_np = self.target_scaler.inverse_transform(data_flat)
# Return as tensor on the original device
inversed_tensor = torch.from_numpy(inversed_np).float().to(data.device)
# Reshape back? Or keep flat? Keep flat for direct metric use often.
return inversed_tensor.flatten()
# return inversed_tensor.reshape(original_shape) # If original shape needed
except Exception as e:
logger.error(f"Failed to inverse transform data: {e}", exc_info=True)
return None # Return None if inverse transform fails
def training_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int) -> torch.Tensor:
x, y = batch # Shapes: x=(batch, seq_len, features), y=(batch, horizon)
outputs = self(x) # Scaled outputs: (batch, horizon)
loss = self._calculate_loss(outputs, y)
# Log scaled metrics
metrics = self.train_metrics(outputs, y) # Update internal state
self.log('train_loss', loss, on_step=False, on_epoch=True, prog_bar=True, logger=True)
self.log_dict(self.train_metrics, on_step=False, on_epoch=True, logger=True) # Log all metrics in collection
return loss
def validation_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int):
x, y = batch
outputs = self(x) # Scaled outputs
loss = self._calculate_loss(outputs, y)
# Log scaled metrics
metrics = self.val_metrics(outputs, y) # Update internal state
self.log('val_loss', loss, on_step=False, on_epoch=True, prog_bar=True, logger=True)
self.log_dict(self.val_metrics, on_step=False, on_epoch=True, logger=True)
# Log MAE on ORIGINAL scale if scaler is available (often the primary metric for checkpointing/Optuna)
if self.target_scaler is not None:
outputs_inv = self._inverse_transform(outputs)
y_inv = self._inverse_transform(y)
if outputs_inv is not None and y_inv is not None:
# Ensure shapes are compatible (flattened by _inverse_transform)
if outputs_inv.shape == y_inv.shape:
self.val_mae_original_scale.update(outputs_inv, y_inv)
self.log('val_mae_orig_scale', self.val_mae_original_scale, on_step=False, on_epoch=True, prog_bar=True, logger=True)
else:
logger.warning(f"Shape mismatch after inverse transform in validation: Preds {outputs_inv.shape}, Targets {y_inv.shape}")
else:
logger.warning("Could not compute original scale MAE in validation due to inverse transform failure.")
def test_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int):
# Optional: Keep this method ONLY if you want trainer.test() to log metrics.
# For getting predictions for evaluation, use predict_step.
# If evaluate_fold_predictions handles all metrics, this can be simplified or removed.
# Let's simplify it for now to only log loss if needed.
try:
x, y = batch
outputs = self(x)
loss = self._calculate_loss(outputs, y)
# Log scaled test metrics if you still want trainer.test() to report them
metrics = self.test_metrics(outputs, y)
self.log('test_loss_step', loss, on_step=True, on_epoch=False) # Log step loss if needed
self.log_dict(self.test_metrics, on_step=False, on_epoch=True, logger=True)
# No return needed if just logging
except Exception as e:
logger.error(f"Error occurred in test_step for batch {batch_idx}: {e}", exc_info=True)
# Optionally log something to indicate failure
def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> Dict[str, torch.Tensor]:
"""
Runs inference for prediction and returns scaled predictions and targets.
'batch' might contain only features depending on the DataLoader setup for predict.
Let's assume the test_loader yields (x, y) pairs for convenience here.
"""
if isinstance(batch, (list, tuple)) and len(batch) == 2:
x, y = batch
else:
# Assume batch contains only features if not a pair
x = batch
y = None # No targets available during prediction if dataloader only yields features
outputs = self(x) # Scaled outputs
result = {'preds_scaled': outputs.detach().cpu()}
if y is not None:
# Include targets if they were part of the batch (e.g., using test_loader for predict)
result['targets_scaled'] = y.detach().cpu()
return result
def configure_optimizers(self) -> Union[optim.Optimizer, Tuple[List[optim.Optimizer], List[Dict[str, Any]]]]:
"""
Configure the optimizer (Adam) and optional LR scheduler.
"""
optimizer = optim.Adam(
self.parameters(),
lr=self.hparams.train_config.learning_rate # Access lr via hparams
)
logger.info(f"Configured Adam optimizer with LR: {self.hparams.train_config.learning_rate}")
# Optional LR Scheduler configuration
scheduler_config = None
if hasattr(self.hparams.train_config, 'scheduler_step_size') and \
self.hparams.train_config.scheduler_step_size is not None and \
hasattr(self.hparams.train_config, 'scheduler_gamma') and \
self.hparams.train_config.scheduler_gamma is not None:
if self.hparams.train_config.scheduler_step_size > 0 and 0 < self.hparams.train_config.scheduler_gamma < 1:
logger.info(f"Configuring StepLR scheduler with step_size={self.hparams.train_config.scheduler_step_size} "
f"and gamma={self.hparams.train_config.scheduler_gamma}")
scheduler = optim.lr_scheduler.StepLR(
optimizer,
step_size=self.hparams.train_config.scheduler_step_size,
gamma=self.hparams.train_config.scheduler_gamma
)
scheduler_config = {
'scheduler': scheduler,
'interval': 'epoch', # or 'step'
'frequency': 1,
'monitor': 'val_loss', # Optional: Only step if monitor improves (for ReduceLROnPlateau)
}
else:
logger.warning("Scheduler parameters provided but invalid (step_size must be >0, 0<gamma<1). No scheduler configured.")
# Example for ReduceLROnPlateau (if needed later)
# scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=5)
# scheduler_config = {'scheduler': scheduler, 'monitor': 'val_loss'}
if scheduler_config:
return [optimizer], [scheduler_config]
else:
return optimizer