import torch import torch.nn as nn from typing import Optional from utils.config_model import ModelConfig class LSTMForecastModel(nn.Module): def __init__(self, model_config: ModelConfig): super().__init__() self.config = model_config self.use_residual_skips = model_config.use_residual_skips # TODO: Initialize LSTM layers # TODO: Initialize dropout # TODO: Initialize output layer # TODO: Initialize residual connection layer if needed def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass through the LSTM network. Args: x: Input tensor of shape (batch_size, sequence_length, input_size) Returns: Predictions tensor of shape (batch_size, forecast_horizon) """ # TODO: Implement forward pass with optional residual connections pass