import numpy as np import torch from torch.utils.data import DataLoader from typing import Dict, Any, Optional from utils.config_model import EvaluationConfig def calculate_mae(y_true: np.ndarray, y_pred: np.ndarray) -> float: """ Calculate Mean Absolute Error. """ # TODO: Implement MAE calculation pass def calculate_rmse(y_true: np.ndarray, y_pred: np.ndarray) -> float: """ Calculate Root Mean Squared Error. """ # TODO: Implement RMSE calculation pass def plot_predictions_vs_actual( y_true: np.ndarray, y_pred: np.ndarray, title_suffix: str, filename: str, max_points: Optional[int] = None ) -> None: """ Create line plot of predictions vs actual values. """ # TODO: Implement prediction vs actual plot pass def plot_scatter_predictions( y_true: np.ndarray, y_pred: np.ndarray, title_suffix: str, filename: str ) -> None: """ Create scatter plot of predictions vs actual values. """ # TODO: Implement scatter plot pass def plot_residuals_time( residuals: np.ndarray, title_suffix: str, filename: str, max_points: Optional[int] = None ) -> None: """ Create plot of residuals over time. """ # TODO: Implement residuals time plot pass def plot_residuals_distribution( residuals: np.ndarray, title_suffix: str, filename: str ) -> None: """ Create histogram/KDE of residuals. """ # TODO: Implement residuals distribution plot pass def evaluate_fold( model: torch.nn.Module, test_loader: DataLoader, loss_fn: torch.nn.Module, device: torch.device, target_scaler: Any, eval_config: EvaluationConfig, fold_num: int ) -> Dict[str, float]: """ Evaluate model on test set and generate plots. """ # TODO: Implement full evaluation pipeline pass