import numpy as np import pandas as pd import torch from torch.utils.data import Dataset, DataLoader from sklearn.preprocessing import StandardScaler, MinMaxScaler from typing import Tuple, Generator, List, Optional from utils.config_model import DataConfig, FeatureConfig, TrainingConfig, EvaluationConfig # --- Data Loading --- def load_raw_data(config: DataConfig) -> pd.DataFrame: """ Load and preprocess raw data from CSV. """ # TODO: Implement CSV loading and datetime parsing pass # --- Feature Engineering --- def engineer_features(df: pd.DataFrame, target_col: str, feature_config: FeatureConfig) -> pd.DataFrame: """ Create features from the target column and datetime index. """ # TODO: Implement feature engineering (lags, rolling stats, time features, wavelets) pass # --- Cross Validation --- class TimeSeriesCrossValidationSplitter: def __init__(self, config: CrossValidationConfig, n_samples: int): self.config = config self.n_samples = n_samples def split(self) -> Generator[Tuple[np.ndarray, np.ndarray, np.ndarray], None, None]: """ Generate train/val/test splits using expanding window approach. """ # TODO: Implement expanding window CV splitter pass # --- Dataset Class --- class TimeSeriesDataset(Dataset): def __init__(self, data_array: np.ndarray, sequence_length: int, forecast_horizon: int): self.data = data_array self.sequence_length = sequence_length self.forecast_horizon = forecast_horizon def __len__(self) -> int: # TODO: Implement length calculation pass def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor]: # TODO: Implement sequence extraction pass # --- Data Preparation --- def prepare_fold_data_and_loaders( full_df: pd.DataFrame, train_idx: np.ndarray, val_idx: np.ndarray, test_idx: np.ndarray, feature_config: FeatureConfig, train_config: TrainingConfig, eval_config: EvaluationConfig ) -> Tuple[DataLoader, DataLoader, DataLoader, object, int]: """ Prepare data loaders for a single fold. """ # TODO: Implement data preparation pipeline pass