import logging import torch import numpy as np from pathlib import Path from typing import Dict, List, Any from forecasting_model.utils.config_model import MainConfig from forecasting_model.data_processing import ( load_raw_data, TimeSeriesCrossValidationSplitter, prepare_fold_data_and_loaders ) # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) def load_config(config_path: Path) -> MainConfig: """ Load and validate configuration from YAML file. """ # TODO: Implement config loading pass def set_seeds(seed: int = 42) -> None: """ Set random seeds for reproducibility. """ # TODO: Implement seed setting pass def determine_device(config: MainConfig) -> torch.device: """ Determine the device to use for training. """ # TODO: Implement device determination pass def aggregate_cv_metrics(all_fold_metrics: List[Dict[str, float]]) -> Dict[str, Dict[str, float]]: """ Calculate mean and standard deviation of metrics across folds. """ # TODO: Implement metric aggregation pass def main(): # Load configuration config = load_config(Path("config.yaml")) # Set random seeds set_seeds() # Determine device device = determine_device(config) # Load raw data df = load_raw_data(config.data) # Initialize CV splitter cv_splitter = TimeSeriesCrossValidationSplitter(config.cross_validation, len(df)) # Initialize list to store fold metrics all_fold_metrics = [] # Cross-validation loop for fold_num, (train_idx, val_idx, test_idx) in enumerate(cv_splitter.split(), 1): logger.info(f"Starting fold {fold_num}") # Prepare data loaders train_loader, val_loader, test_loader, target_scaler, input_size = prepare_fold_data_and_loaders( df, train_idx, val_idx, test_idx, config.features, config.training, config.evaluation ) # Update model config with input size config.model.input_size = input_size # Initialize model model = LSTMForecastModel(config.model).to(device) # Initialize loss function loss_fn = torch.nn.MSELoss() if config.training.loss_function == "MSE" else torch.nn.L1Loss() # Initialize scheduler if configured scheduler = None if config.training.scheduler_step_size is not None: # TODO: Initialize scheduler pass # Initialize trainer trainer = Trainer( model, train_loader, val_loader, loss_fn, device, config.training, scheduler, target_scaler ) # Train model trainer.train() # Evaluate on test set fold_metrics = evaluate_fold( model, test_loader, loss_fn, device, target_scaler, config.evaluation, fold_num ) all_fold_metrics.append(fold_metrics) # Optional: Clear GPU memory if device.type == "cuda": torch.cuda.empty_cache() # Aggregate metrics aggregated_metrics = aggregate_cv_metrics(all_fold_metrics) # Log final results logger.info("Cross-validation results:") for metric, stats in aggregated_metrics.items(): logger.info(f"{metric}: {stats['mean']:.4f} ± {stats['std']:.4f}") if __name__ == "__main__": main()