This commit is contained in:
2025-05-02 10:45:06 +02:00
commit 7c9d809a82
29 changed files with 2931 additions and 0 deletions

View File

@ -0,0 +1,82 @@
import numpy as np
import torch
from torch.utils.data import DataLoader
from typing import Dict, Any, Optional
from utils.config_model import EvaluationConfig
def calculate_mae(y_true: np.ndarray, y_pred: np.ndarray) -> float:
"""
Calculate Mean Absolute Error.
"""
# TODO: Implement MAE calculation
pass
def calculate_rmse(y_true: np.ndarray, y_pred: np.ndarray) -> float:
"""
Calculate Root Mean Squared Error.
"""
# TODO: Implement RMSE calculation
pass
def plot_predictions_vs_actual(
y_true: np.ndarray,
y_pred: np.ndarray,
title_suffix: str,
filename: str,
max_points: Optional[int] = None
) -> None:
"""
Create line plot of predictions vs actual values.
"""
# TODO: Implement prediction vs actual plot
pass
def plot_scatter_predictions(
y_true: np.ndarray,
y_pred: np.ndarray,
title_suffix: str,
filename: str
) -> None:
"""
Create scatter plot of predictions vs actual values.
"""
# TODO: Implement scatter plot
pass
def plot_residuals_time(
residuals: np.ndarray,
title_suffix: str,
filename: str,
max_points: Optional[int] = None
) -> None:
"""
Create plot of residuals over time.
"""
# TODO: Implement residuals time plot
pass
def plot_residuals_distribution(
residuals: np.ndarray,
title_suffix: str,
filename: str
) -> None:
"""
Create histogram/KDE of residuals.
"""
# TODO: Implement residuals distribution plot
pass
def evaluate_fold(
model: torch.nn.Module,
test_loader: DataLoader,
loss_fn: torch.nn.Module,
device: torch.device,
target_scaler: Any,
eval_config: EvaluationConfig,
fold_num: int
) -> Dict[str, float]:
"""
Evaluate model on test set and generate plots.
"""
# TODO: Implement full evaluation pipeline
pass