init
This commit is contained in:
67
forecasting_model/data_processing.py
Normal file
67
forecasting_model/data_processing.py
Normal file
@ -0,0 +1,67 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import torch
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
||||
from typing import Tuple, Generator, List, Optional
|
||||
from utils.config_model import DataConfig, FeatureConfig, TrainingConfig, EvaluationConfig
|
||||
|
||||
# --- Data Loading ---
|
||||
def load_raw_data(config: DataConfig) -> pd.DataFrame:
|
||||
"""
|
||||
Load and preprocess raw data from CSV.
|
||||
"""
|
||||
# TODO: Implement CSV loading and datetime parsing
|
||||
pass
|
||||
|
||||
# --- Feature Engineering ---
|
||||
def engineer_features(df: pd.DataFrame, target_col: str, feature_config: FeatureConfig) -> pd.DataFrame:
|
||||
"""
|
||||
Create features from the target column and datetime index.
|
||||
"""
|
||||
# TODO: Implement feature engineering (lags, rolling stats, time features, wavelets)
|
||||
pass
|
||||
|
||||
# --- Cross Validation ---
|
||||
class TimeSeriesCrossValidationSplitter:
|
||||
def __init__(self, config: CrossValidationConfig, n_samples: int):
|
||||
self.config = config
|
||||
self.n_samples = n_samples
|
||||
|
||||
def split(self) -> Generator[Tuple[np.ndarray, np.ndarray, np.ndarray], None, None]:
|
||||
"""
|
||||
Generate train/val/test splits using expanding window approach.
|
||||
"""
|
||||
# TODO: Implement expanding window CV splitter
|
||||
pass
|
||||
|
||||
# --- Dataset Class ---
|
||||
class TimeSeriesDataset(Dataset):
|
||||
def __init__(self, data_array: np.ndarray, sequence_length: int, forecast_horizon: int):
|
||||
self.data = data_array
|
||||
self.sequence_length = sequence_length
|
||||
self.forecast_horizon = forecast_horizon
|
||||
|
||||
def __len__(self) -> int:
|
||||
# TODO: Implement length calculation
|
||||
pass
|
||||
|
||||
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# TODO: Implement sequence extraction
|
||||
pass
|
||||
|
||||
# --- Data Preparation ---
|
||||
def prepare_fold_data_and_loaders(
|
||||
full_df: pd.DataFrame,
|
||||
train_idx: np.ndarray,
|
||||
val_idx: np.ndarray,
|
||||
test_idx: np.ndarray,
|
||||
feature_config: FeatureConfig,
|
||||
train_config: TrainingConfig,
|
||||
eval_config: EvaluationConfig
|
||||
) -> Tuple[DataLoader, DataLoader, DataLoader, object, int]:
|
||||
"""
|
||||
Prepare data loaders for a single fold.
|
||||
"""
|
||||
# TODO: Implement data preparation pipeline
|
||||
pass
|
Reference in New Issue
Block a user