intermediate backup

This commit is contained in:
2025-05-03 20:46:14 +02:00
parent 2b0a5728d4
commit 6542caf48f
38 changed files with 4513 additions and 1067 deletions

View File

View File

View File

View File

View File

@ -0,0 +1,22 @@
# forecasting/base.py
from typing import List, Dict, Any
import pandas as pd
import numpy as np
class ForecastProvider:
def get_forecasts(self,
historical_data: pd.DataFrame,
forecast_horizons: List[int],
optimization_horizon: int) -> Dict[int, np.ndarray]:
"""Returns forecasts for each requested horizon."""
pass
def get_required_lookback(self) -> int:
"""Returns the minimum number of historical data points required."""
pass
def get_forecast_horizons(self) -> List[int]:
"""Returns the list of forecast horizons."""
pass

View File

@ -0,0 +1,188 @@
import logging
from typing import List, Dict, Any, Optional
import numpy as np
import pandas as pd
import torch
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from .base import ForecastProvider
from forecasting_model.utils import FeatureConfig
from forecasting_model.train.model import LSTMForecastLightningModule
from forecasting_model import engineer_features
from optimizer.forecasting.utils import interpolate_forecast
logger = logging.getLogger(__name__)
class EnsembleProvider(ForecastProvider):
"""Provides forecasts using an ensemble of trained LSTM models."""
def __init__(
self,
fold_artifacts: List[Dict[str, Any]],
ensemble_method: str,
ensemble_feature_config: FeatureConfig, # Assumed consistent across folds by loading logic
ensemble_target_col: str, # Assumed consistent
):
if not fold_artifacts:
raise ValueError("EnsembleProvider requires at least one fold artifact.")
self.fold_artifacts = fold_artifacts
self.ensemble_method = ensemble_method
# Store common config for reference, but use fold-specific details in get_forecast
self.ensemble_feature_config = ensemble_feature_config
self.ensemble_target_col = ensemble_target_col
self.common_forecast_horizons = sorted(ensemble_feature_config.forecast_horizon) # Assumed consistent
# Calculate max lookback needed across all folds
max_lookback = 0
for i, fold in enumerate(fold_artifacts):
try:
fold_feature_config = fold['feature_config']
fold_seq_len = fold_feature_config.sequence_length
feature_lookback = 0
if fold_feature_config.lags:
feature_lookback = max(feature_lookback, max(fold_feature_config.lags))
if fold_feature_config.rolling_window_sizes:
feature_lookback = max(feature_lookback, max(w - 1 for w in fold_feature_config.rolling_window_sizes))
fold_total_lookback = fold_seq_len + feature_lookback
max_lookback = max(max_lookback, fold_total_lookback)
except KeyError as e:
raise ValueError(f"Fold artifact {i} is missing expected key: {e}") from e
except Exception as e:
raise ValueError(f"Error processing fold artifact {i} for lookback calculation: {e}") from e
self._required_lookback = max_lookback
logger.debug(f"EnsembleProvider initialized with {len(fold_artifacts)} folds. Method: '{ensemble_method}'. Required lookback: {self._required_lookback}")
if ensemble_method not in ['mean', 'median']:
raise ValueError(f"Unsupported ensemble method: {ensemble_method}. Use 'mean' or 'median'.")
def get_required_lookback(self) -> int:
return self._required_lookback
def get_forecast(
self,
historical_data_slice: pd.DataFrame,
optimization_horizon_hours: int
) -> np.ndarray | None:
"""
Generates forecasts from each fold model, interpolates, and aggregates.
"""
logger.debug(f"EnsembleProvider: Generating forecast for {optimization_horizon_hours} hours using {self.ensemble_method}.")
if len(historical_data_slice) < self._required_lookback:
logger.error(f"Insufficient historical data provided. Need {self._required_lookback}, got {len(historical_data_slice)}.")
return None
fold_forecasts_interpolated = []
last_actual_price = historical_data_slice[self.ensemble_target_col].iloc[-1] # Common anchor for all folds
for i, fold_artifact in enumerate(self.fold_artifacts):
fold_id = fold_artifact.get("fold_id", i + 1)
try:
fold_model: LSTMForecastLightningModule = fold_artifact['model_instance']
fold_feature_config: FeatureConfig = fold_artifact['feature_config']
fold_target_scaler: Optional[Any] = fold_artifact['target_scaler']
fold_target_col: str = fold_artifact['main_forecasting_config'].data.target_col # Use fold specific target
fold_seq_len = fold_feature_config.sequence_length
fold_horizons = sorted(fold_feature_config.forecast_horizon)
# Calculate lookback needed *for this specific fold* to check slice length
fold_feature_lookback = 0
if fold_feature_config.lags: fold_feature_lookback = max(fold_feature_lookback, max(fold_feature_config.lags))
if fold_feature_config.rolling_window_sizes: fold_feature_lookback = max(fold_feature_lookback, max(w - 1 for w in fold_feature_config.rolling_window_sizes))
fold_total_lookback = fold_seq_len + fold_feature_lookback
if len(historical_data_slice) < fold_total_lookback:
logger.warning(f"Fold {fold_id}: Skipping fold. Insufficient historical data in slice for this fold's lookback ({fold_total_lookback} needed).")
continue
# 1. Feature Engineering (using fold's config)
# Slice needs to be long enough for this fold's total lookback.
# The input slice `historical_data_slice` should already be long enough based on max_lookback.
engineered_df_fold = engineer_features(historical_data_slice.copy(), fold_target_col, fold_feature_config)
if engineered_df_fold.isnull().any().any():
logger.warning(f"Fold {fold_id}: NaNs found after feature engineering. Attempting fill.")
engineered_df_fold = engineered_df_fold.ffill().bfill()
if engineered_df_fold.isnull().any().any():
logger.error(f"Fold {fold_id}: NaNs persist after fill. Skipping fold.")
continue
# 2. Create *one* input sequence (using fold's sequence length)
if len(engineered_df_fold) < fold_seq_len:
logger.error(f"Fold {fold_id}: Engineered data ({len(engineered_df_fold)}) is shorter than fold sequence length ({fold_seq_len}). Skipping fold.")
continue
input_sequence_data_fold = engineered_df_fold.iloc[-fold_seq_len:].copy()
feature_columns_fold = [col for col in engineered_df_fold.columns if col != fold_target_col] # Example
if not feature_columns_fold: feature_columns_fold = engineered_df_fold.columns.tolist()
input_sequence_np_fold = input_sequence_data_fold[feature_columns_fold].values
if input_sequence_np_fold.shape != (fold_seq_len, len(feature_columns_fold)):
logger.error(f"Fold {fold_id}: Input sequence has wrong shape. Expected ({fold_seq_len}, {len(feature_columns_fold)}), got {input_sequence_np_fold.shape}. Skipping fold.")
continue
input_tensor_fold = torch.FloatTensor(input_sequence_np_fold).unsqueeze(0)
# 3. Run Inference (using fold's model)
fold_model.eval()
with torch.no_grad():
predictions_scaled_fold = fold_model(input_tensor_fold) # Shape (1, num_fold_horizons)
if predictions_scaled_fold.ndim != 2 or predictions_scaled_fold.shape[0] != 1 or predictions_scaled_fold.shape[1] != len(fold_horizons):
logger.error(f"Fold {fold_id}: Prediction output shape mismatch. Expected (1, {len(fold_horizons)}), got {predictions_scaled_fold.shape}. Skipping fold.")
continue
predictions_scaled_np_fold = predictions_scaled_fold.squeeze(0).cpu().numpy()
# 4. Inverse Transform (using fold's scaler)
predictions_original_scale_fold = predictions_scaled_np_fold
if fold_target_scaler:
try:
predictions_original_scale_fold = fold_target_scaler.inverse_transform(predictions_scaled_np_fold.reshape(-1, 1)).flatten()
except Exception as e:
logger.error(f"Fold {fold_id}: Failed to apply inverse transform: {e}. Skipping fold.", exc_info=True)
continue
# 5. Interpolate (using fold's horizons)
interpolated_forecast_fold = interpolate_forecast(
native_horizons=fold_horizons,
native_predictions=predictions_original_scale_fold,
target_horizon=optimization_horizon_hours,
last_known_actual=last_actual_price
)
if interpolated_forecast_fold is not None:
fold_forecasts_interpolated.append(interpolated_forecast_fold)
logger.debug(f"Fold {fold_id}: Successfully generated interpolated forecast.")
else:
logger.warning(f"Fold {fold_id}: Interpolation failed. Skipping fold.")
except Exception as e:
logger.error(f"Error processing ensemble fold {fold_id}: {e}", exc_info=True)
continue # Skip this fold on error
# --- Aggregation ---
if not fold_forecasts_interpolated:
logger.error("No successful forecasts generated from any ensemble folds.")
return None
logger.debug(f"Aggregating forecasts from {len(fold_forecasts_interpolated)} folds using '{self.ensemble_method}'.")
stacked_predictions = np.stack(fold_forecasts_interpolated, axis=0) # Shape (n_folds, target_horizon)
if self.ensemble_method == 'mean':
final_ensemble_forecast = np.mean(stacked_predictions, axis=0)
elif self.ensemble_method == 'median':
final_ensemble_forecast = np.median(stacked_predictions, axis=0)
else:
# Should be caught in __init__, but double-check
logger.error(f"Internal error: Invalid ensemble method '{self.ensemble_method}' during aggregation.")
return None
logger.debug(f"EnsembleProvider: Successfully generated forecast.")
return final_ensemble_forecast

View File

@ -0,0 +1,150 @@
import logging
from typing import List, Dict, Any, Optional
import numpy as np
import pandas as pd
import torch
from sklearn.preprocessing import StandardScaler, MinMaxScaler
# Imports from our project structure
from .base import ForecastProvider
from forecasting_model.utils import FeatureConfig
from forecasting_model.train.model import LSTMForecastLightningModule
from forecasting_model import engineer_features
from optimizer.forecasting.utils import interpolate_forecast
logger = logging.getLogger(__name__)
class SingleModelProvider(ForecastProvider):
"""Provides forecasts using a single trained LSTM model."""
def __init__(
self,
model_instance: LSTMForecastLightningModule,
feature_config: FeatureConfig,
target_col: str,
target_scaler: Optional[Any], # BaseEstimator, TransformerMixin -> more specific if possible
# input_size: int # Not needed directly if model instance is configured
):
self.model = model_instance
self.feature_config = feature_config
self.target_col = target_col
self.target_scaler = target_scaler
self.sequence_length = feature_config.sequence_length
self.forecast_horizons = sorted(feature_config.forecast_horizon) # Ensure sorted
# Calculate required lookback for feature engineering
feature_lookback = 0
if feature_config.lags:
feature_lookback = max(feature_lookback, max(feature_config.lags))
if feature_config.rolling_window_sizes:
# Rolling window of size W needs W-1 previous points
feature_lookback = max(feature_lookback, max(w - 1 for w in feature_config.rolling_window_sizes))
# Total lookback: sequence length for model input + feature engineering needs
# We need `sequence_length` points for the *last* input sequence.
# The first point of that sequence needs `feature_lookback` points before it.
# So, total points needed before the *end* of the input sequence is sequence_length + feature_lookback.
# Since the input sequence ends *before* the first forecast point (t=1),
# we need `sequence_length + feature_lookback` points before t=1.
self._required_lookback = self.sequence_length + feature_lookback
logger.debug(f"SingleModelProvider initialized. Required lookback: {self._required_lookback} (SeqLen: {self.sequence_length}, FeatLookback: {feature_lookback})")
def get_required_lookback(self) -> int:
return self._required_lookback
def get_forecast(
self,
historical_data_slice: pd.DataFrame,
optimization_horizon_hours: int
) -> np.ndarray | None:
"""
Generates forecast using the single model and interpolates to hourly resolution.
"""
logger.debug(f"SingleModelProvider: Generating forecast for {optimization_horizon_hours} hours.")
if len(historical_data_slice) < self._required_lookback:
logger.error(f"Insufficient historical data provided. Need {self._required_lookback}, got {len(historical_data_slice)}.")
return None
try:
# 1. Feature Engineering
# Use the provided slice which already includes the lookback.
engineered_df = engineer_features(historical_data_slice.copy(), self.target_col, self.feature_config)
# Check for NaNs after feature engineering before creating sequences
if engineered_df.isnull().any().any():
logger.warning("NaNs found after feature engineering. Attempting to fill with ffill/bfill.")
# Be careful about filling target vs features if needed
engineered_df = engineered_df.ffill().bfill()
if engineered_df.isnull().any().any():
logger.error("NaNs persist after fill. Cannot create sequences.")
return None
# 2. Create *one* input sequence ending at the last point of the historical slice
# This sequence is used to predict starting from the next hour (t=1)
if len(engineered_df) < self.sequence_length:
logger.error(f"Engineered data ({len(engineered_df)}) is shorter than sequence length ({self.sequence_length}).")
return None
input_sequence_data = engineered_df.iloc[-self.sequence_length:].copy()
# Convert sequence data to numpy array (excluding target if model expects it that way)
# Assuming model takes all engineered features as input
# TODO: Verify the exact features the model expects (target included/excluded?)
# Assuming all columns except maybe the original target are features
feature_columns = [col for col in engineered_df.columns if col != self.target_col] # Example
if not feature_columns: feature_columns = engineered_df.columns.tolist() # Use all if target wasn't dropped
input_sequence_np = input_sequence_data[feature_columns].values
if input_sequence_np.shape != (self.sequence_length, len(feature_columns)):
logger.error(f"Input sequence has wrong shape. Expected ({self.sequence_length}, {len(feature_columns)}), got {input_sequence_np.shape}")
return None
input_tensor = torch.FloatTensor(input_sequence_np).unsqueeze(0) # Add batch dim
# 3. Run Inference
self.model.eval()
with torch.no_grad():
# Model output shape: (1, num_horizons)
predictions_scaled = self.model(input_tensor)
if predictions_scaled.ndim != 2 or predictions_scaled.shape[0] != 1 or predictions_scaled.shape[1] != len(self.forecast_horizons):
logger.error(f"Model prediction output shape mismatch. Expected (1, {len(self.forecast_horizons)}), got {predictions_scaled.shape}.")
return None
predictions_scaled_np = predictions_scaled.squeeze(0).cpu().numpy() # Shape: (num_horizons,)
# 4. Inverse Transform
predictions_original_scale = predictions_scaled_np
if self.target_scaler:
try:
# Scaler expects shape (n_samples, n_features), even if n_features=1
predictions_original_scale = self.target_scaler.inverse_transform(predictions_scaled_np.reshape(-1, 1)).flatten()
logger.debug("Applied inverse transform to predictions.")
except Exception as e:
logger.error(f"Failed to apply inverse transform: {e}", exc_info=True)
# Decide whether to return scaled or None. Returning None is safer.
return None
# 5. Interpolate
# Use the last actual price from the input data as the anchor point t=0
last_actual_price = historical_data_slice[self.target_col].iloc[-1]
interpolated_forecast = interpolate_forecast(
native_horizons=self.forecast_horizons,
native_predictions=predictions_original_scale,
target_horizon=optimization_horizon_hours,
last_known_actual=last_actual_price
)
if interpolated_forecast is None:
logger.error("Interpolation step failed.")
return None
logger.debug(f"SingleModelProvider: Successfully generated forecast.")
return interpolated_forecast
except Exception as e:
logger.error(f"Error during single model forecast generation: {e}", exc_info=True)
return None

View File

@ -0,0 +1,67 @@
from typing import List, Optional, Dict, Any
import numpy as np
import logging
logger = logging.getLogger(__name__)
# --- Interpolation Helper ---
def interpolate_forecast(
native_horizons: List[int],
native_predictions: np.ndarray,
target_horizon: int,
last_known_actual: Optional[float] = None # Optional: use last known price as t=0 for anchor
) -> np.ndarray | None:
"""
Linearly interpolates model predictions at native horizons to a full hourly sequence.
Args:
native_horizons: List of horizons the model predicts (e.g., [1, 6, 12, 24]). Must not be empty.
native_predictions: Numpy array of predictions corresponding to native_horizons. Must not be empty.
target_horizon: The desired length of the hourly forecast (e.g., 24).
last_known_actual: Optional last actual price before the forecast starts (at t=0). Used as anchor if 0 not in native_horizons.
Returns:
A numpy array of shape (target_horizon,) with interpolated values, or None on error.
"""
if not native_horizons or native_predictions is None or native_predictions.size == 0:
logger.error("Cannot interpolate with empty native horizons or predictions.")
return None
if len(native_horizons) != len(native_predictions):
logger.error(f"Mismatched lengths: native_horizons ({len(native_horizons)}) vs native_predictions ({len(native_predictions)})")
return None
try:
# Ensure horizons are sorted
sorted_indices = np.argsort(native_horizons)
# Use float for potentially non-integer horizons if ever needed, ensure points > 0 usually
xp = np.array(native_horizons, dtype=float)[sorted_indices]
fp = native_predictions[sorted_indices]
# Target points for interpolation (hours 1 to target_horizon)
x_target = np.arange(1, target_horizon + 1, dtype=float)
# Add t=0 point if provided and 0 is not already a native horizon
# This anchors the start of the interpolation.
if last_known_actual is not None and xp[0] > 0:
xp = np.insert(xp, 0, 0.0)
fp = np.insert(fp, 0, last_known_actual)
elif xp[0] == 0 and last_known_actual is not None:
logger.debug("Native horizons include 0, using model's prediction for t=0 instead of last_known_actual.")
elif last_known_actual is None and xp[0] > 0:
logger.warning("No last_known_actual provided and native horizons start > 0. Interpolation might be less accurate at the beginning.")
# If the first native horizon is > 1, np.interp will extrapolate constantly backwards from the first point.
# Check if target range requires extrapolation beyond the model's capability
if target_horizon > xp[-1]:
logger.warning(f"Target horizon ({target_horizon}) extends beyond the maximum native forecast horizon ({xp[-1]}). Extrapolation will occur (constant value).")
interpolated_values = np.interp(x_target, xp, fp)
return interpolated_values
except Exception as e:
logger.error(f"Linear interpolation failed: {e}", exc_info=True)
return None

View File

View File

@ -0,0 +1,74 @@
import cvxpy as cp
import numpy as np
def solve_battery_optimization_hourly(
hourly_prices, # Array of prices for each hour [0, 1, ..., n-1]
initial_B, # Current state of charge (MWh)
max_capacity=1.0, # MWh
max_rate=1.0 # MW (+ve discharge / -ve charge)
):
"""
Solves the battery scheduling optimization problem assuming hourly steps. We want to decide at the start of each hour t=0..n-1
how much power to buy/sell (P_net_t) and therefore the state of charge at the start of each next hour (B_t+1).
Args:
hourly_prices: Prices (€/MWh) for each hour t=0..n-1.
initial_B: The state of charge at the beginning (time t=0).
max_capacity: Maximum battery energy capacity (MWh).
max_rate: Maximum charge/discharge power rate (MW).
Returns:
Tuple: (status, optimal_profit, power_schedule, B_schedule)
Returns (status, None, None, None) if optimization fails.
"""
n_hours = len(hourly_prices)
# --- CVXPY Variables ---
# Power flow for each hour t=0..n-1 (-discharge, +charge)
P = cp.Variable(n_hours, name="Power_Flow_MW")
# State of charge at the START of each hour t=0..n (B[t] is B at hour t)
B = cp.Variable(n_hours + 1, name="State_of_Charge_MWh")
# --- Objective Function ---
# Profit = sum(price[t] * Power[t])
prices = np.array(hourly_prices)
profit = prices @ P # Equivalent to cp.sum(cp.multiply(prices, P)) / prices.dot(P)
objective = cp.Maximize(profit)
# --- Constraints ---
constraints = []
# 1. Initial B
constraints.append(B[0] == initial_B)
# 2. B Dynamics: B[t+1] = B[t] - P[t] * 1 hour
constraints.append(B[1:] == B[:-1] + P)
# 3. Power Rate Limits: -max_rate <= P[t] <= max_rate
constraints.append(cp.abs(P) <= max_rate)
# 4. B Limits: 0 <= B[t] <= max_capacity (applies to B[0]...B[n])
constraints.append(B >= 0)
constraints.append(B <= max_capacity)
# --- Problem Definition and Solving ---
problem = cp.Problem(objective, constraints)
try:
# Alternative solvers are ECOS, MOSEK, and SCS
optimal_profit = problem.solve(solver=cp.CLARABEL, verbose=False)
if problem.status in [cp.OPTIMAL, cp.OPTIMAL_INACCURATE]:
return (
problem.status,
optimal_profit,
P.value, # NumPy array of optimal power flows per hour
B.value # NumPy array of optimal B at start of each hour
)
else:
print(f"Optimization failed. Solver status: {problem.status}")
return problem.status, None, None, None
except cp.error.SolverError as e:
print(f"Solver Error: {e}")
return "Solver Error", None, None, None

View File

View File

@ -0,0 +1,41 @@
## Optimizer Definition for a constraint n-forecast Trading-Problem
We want to optimize the performance of an energy trader given the forecast for n steps.
The battery:
- holds 1MWh
- charges/discharges at max. 1MW per hour (we can add/loose x*1MW, x \in R )
Prices are stable for the given hour (t) and we sell and buy for the same price.
### Considerations:
- Single variable, P (=x), for each hour t from 0 to n-1.
- If P > 0, it represents discharging (selling power) with a magnitude of P.
- If P < 0, it represents charging (buying power) with a magnitude of -P.
- If P = 0, it represents holding (doing nothing).
- if we have forecasts for t_n, t_n+m we might have to **interpolate** between n .. m
- or... we work with the gaps and dt as charge time .... no
#### Variables:
- price_t = price per MWH at t (eq)
- B (t=0..n) = State of Battery in MWH
- P (t=0..n) = Charge/Discharge factor given the possible base rate of 1MW/h
- max_p = 1 (charge/discharge limits) & and battery capacity limits (both=1)
- SoB_initial = 0
- h = horizon \in N^+
### Objective
- We **Maximize**: Sum_{t=0}^{n-1} (price_t * P)
### Constraints
- Fixed starting state: SoB_0 = SoB_initial
- Charge/Discharge Limit: (-max_p <= P <= max_p) for all t = 0, ..., n-1
- Storage Limit: (0 <= B+(1*P) <= max_p) for all t = 0, ..., n-1
- Future B State: SoB_{t+1} = (B + P) for t = 0 to n-1

297
optimizer/utils/model_io.py Normal file
View File

@ -0,0 +1,297 @@
import logging
import yaml
import json
from pathlib import Path
from typing import Dict, Any, Optional, List
import torch
from sklearn.base import BaseEstimator, TransformerMixin # For scaler type hint
# Import necessary components from forecasting_model
from forecasting_model.utils.forecast_config_model import MainConfig, FeatureConfig
from forecasting_model.train.model import LSTMForecastLightningModule
logger = logging.getLogger(__name__)
def load_single_model_artifact(
model_path: Path,
config_path: Path,
input_size_path: Path,
target_scaler_path: Optional[Path] = None
) -> Optional[Dict[str, Any]]:
"""
Loads artifacts for a single trained model checkpoint.
Args:
model_path: Path to the model checkpoint file (.ckpt).
config_path: Path to the corresponding main YAML config file.
input_size_path: Path to the input_size.pt file.
target_scaler_path: Optional path to the target_scaler.pt file.
Returns:
A dictionary containing loaded artifacts ('model_instance', 'feature_config',
'target_scaler', 'main_forecasting_config'), or None if loading fails.
"""
logger.info(f"Loading single model artifact from directory: {model_path.parent}")
loaded_artifacts = {}
try:
# 1. Load Config
if not config_path.is_file():
logger.error(f"Config file not found at {config_path}")
return None
with open(config_path, 'r') as f:
config_data = yaml.safe_load(f)
main_config = MainConfig(**config_data)
loaded_artifacts['main_forecasting_config'] = main_config
loaded_artifacts['feature_config'] = main_config.features
logger.debug(f"Loaded config from {config_path}")
# 2. Load Input Size
if not input_size_path.is_file():
logger.error(f"Input size file not found at {input_size_path}")
return None
input_size = torch.load(input_size_path)
if not isinstance(input_size, int) or input_size <= 0:
logger.error(f"Invalid input size loaded from {input_size_path}: {input_size}")
return None
logger.debug(f"Loaded input size ({input_size}) from {input_size_path}")
# 3. Load Target Scaler (Optional)
target_scaler = None
if target_scaler_path:
if not target_scaler_path.is_file():
logger.warning(f"Target scaler file not found at {target_scaler_path}. Proceeding without scaler.")
else:
try:
target_scaler = torch.load(target_scaler_path)
# Basic check if it looks like a scaler
if not isinstance(target_scaler, (BaseEstimator, TransformerMixin)):
logger.warning(f"Loaded object from {target_scaler_path} might not be a valid scaler ({type(target_scaler)}).")
# Decide if this should be a hard failure or just a warning
else:
logger.debug(f"Loaded target scaler from {target_scaler_path}")
except Exception as e:
logger.error(f"Error loading target scaler from {target_scaler_path}: {e}", exc_info=True)
# Decide if this should be a hard failure
return None # Fail hard if scaler loading fails
loaded_artifacts['target_scaler'] = target_scaler
# 4. Initialize Model Architecture
# Ensure model config forecast horizon matches feature config (should be guaranteed by MainConfig validation)
if set(main_config.model.forecast_horizon) != set(main_config.features.forecast_horizon):
logger.warning(f"Mismatch between model ({main_config.model.forecast_horizon}) and feature ({main_config.features.forecast_horizon}) forecast horizons in config {config_path}. Using feature config.")
# This might indicate an issue with the saved config, but we proceed using the feature config horizon
# main_config.model.forecast_horizon = main_config.features.forecast_horizon # Correct it for model init? Risky.
model_instance = LSTMForecastLightningModule(
model_config=main_config.model,
train_config=main_config.training, # Pass train config if needed
input_size=input_size,
target_scaler=target_scaler # Pass scaler to model if it uses it internally during inference
)
logger.debug("Initialized model architecture.")
# 5. Load Model State Dictionary
if not model_path.is_file():
logger.error(f"Model checkpoint file not found at {model_path}")
return None
# Load onto CPU first to avoid GPU memory issues if the loading machine is different
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
# Adjust state dict keys if saved with 'model.' prefix from Lightning wrapper common during saving ckpt
if any(key.startswith('model.') for key in state_dict.get('state_dict', state_dict).keys()):
state_dict = {k.partition('model.')[2]: v for k, v in state_dict.get('state_dict', state_dict).items()}
logger.debug("Adjusted state dict keys (removed 'model.' prefix).")
# Load the state dict
# Use strict=False initially if unsure about exact key matching, but strict=True is safer
try:
load_result = model_instance.load_state_dict(state_dict, strict=True)
logger.debug(f"Model state loaded. Result: {load_result}")
except RuntimeError as e:
logger.error(f"Error loading state dict into model (strict=True): {e}. Trying strict=False.")
try:
load_result = model_instance.load_state_dict(state_dict, strict=False)
logger.warning(f"Model state loaded with strict=False. Result: {load_result}. Check for missing/unexpected keys.")
except Exception as e_false:
logger.error(f"Failed to load state dict even with strict=False: {e_false}", exc_info=True)
return None
model_instance.eval() # Set model to evaluation mode
loaded_artifacts['model_instance'] = model_instance
logger.info(f"Successfully loaded single model artifact: {model_path.name}")
return loaded_artifacts
except FileNotFoundError:
logger.error(f"A required file was not found during artifact loading for {model_path.parent}.", exc_info=True)
return None
except yaml.YAMLError as e:
logger.error(f"Error parsing YAML config file {config_path}: {e}", exc_info=True)
return None
except Exception as e:
logger.error(f"Failed to load single model artifact from {model_path.parent}: {e}", exc_info=True)
return None
def load_ensemble_artifact(
ensemble_definition_path: Path,
hpo_base_output_dir: Path # Base directory where HPO study results (including ensemble JSON) are saved
) -> Optional[Dict[str, Any]]:
"""
Loads artifacts for an ensemble based on its definition JSON file.
Args:
ensemble_definition_path: Path to the _best_ensemble.json file.
hpo_base_output_dir: The base directory where the HPO study ran and
where relative paths within the JSON are anchored.
Returns:
A dictionary containing 'ensemble_method', 'fold_artifacts' (a list
of dictionaries, each like the output of load_single_model_artifact),
'ensemble_feature_config', and 'ensemble_target_col', or None if loading fails.
"""
logger.info(f"Loading ensemble artifact definition from: {ensemble_definition_path}")
try:
if not ensemble_definition_path.is_file():
logger.error(f"Ensemble definition file not found at: {ensemble_definition_path}")
return None
with open(ensemble_definition_path, 'r') as f:
ensemble_definition = json.load(f)
except json.JSONDecodeError as e:
logger.error(f"Error decoding ensemble definition JSON file: {e}", exc_info=True)
return None
except Exception as e:
logger.error(f"Error loading ensemble definition: {e}", exc_info=True)
return None
# Extract information from the definition
ensemble_method = ensemble_definition.get("ensemble_method")
fold_models_definitions = ensemble_definition.get("fold_models")
# Base directory for artifacts *relative to* hpo_base_output_dir
relative_artifacts_base_dir = ensemble_definition.get("ensemble_artifacts_base_dir")
if not ensemble_method or not fold_models_definitions:
logger.error("Ensemble definition file is missing 'ensemble_method' or 'fold_models' list.")
return None
if not relative_artifacts_base_dir:
logger.error("Ensemble definition file is missing 'ensemble_artifacts_base_dir'. Cannot locate fold artifacts.")
return None
# --- Determine Absolute Path to Fold Artifacts ---
# The paths inside fold_models are relative to ensemble_artifacts_base_dir,
# which itself is relative to hpo_base_output_dir.
absolute_artifacts_base_dir = hpo_base_output_dir / Path(relative_artifacts_base_dir)
logger.debug(f"Absolute base directory for fold artifacts: {absolute_artifacts_base_dir}")
if not absolute_artifacts_base_dir.is_dir():
logger.error(f"Calculated absolute artifact base directory does not exist or is not a directory: {absolute_artifacts_base_dir}")
return None
loaded_fold_artifacts: List[Dict[str, Any]] = []
common_feature_config: Optional[FeatureConfig] = None
common_target_col: Optional[str] = None
logger.info(f"Loading artifacts for {len(fold_models_definitions)} folds defined in the ensemble...")
# --- Load Artifacts for Each Fold ---
for i, fold_def in enumerate(fold_models_definitions):
fold_id = fold_def.get("fold_id", i + 1)
logger.debug(f"--- Loading Fold {fold_id} ---")
model_path_rel = fold_def.get("model_path")
scaler_path_rel = fold_def.get("target_scaler_path")
input_size_path_rel = fold_def.get("input_size_path")
config_path_rel = fold_def.get("config_path")
if not model_path_rel or not input_size_path_rel or not config_path_rel:
logger.error(f"Fold {fold_id}: Definition is missing required path(s) (model, input_size, or config). Skipping fold.")
continue
# Construct absolute paths for this fold's artifacts
try:
abs_model_path = (absolute_artifacts_base_dir / Path(model_path_rel)).resolve()
abs_input_size_path = (absolute_artifacts_base_dir / Path(input_size_path_rel)).resolve()
abs_config_path = (absolute_artifacts_base_dir / Path(config_path_rel)).resolve()
abs_scaler_path = (absolute_artifacts_base_dir / Path(scaler_path_rel)).resolve() if scaler_path_rel else None
logger.debug(f"Fold {fold_id} - Model Path: {abs_model_path}")
logger.debug(f"Fold {fold_id} - Config Path: {abs_config_path}")
logger.debug(f"Fold {fold_id} - Input Size Path: {abs_input_size_path}")
logger.debug(f"Fold {fold_id} - Scaler Path: {abs_scaler_path}")
# Load the artifacts for this single fold using the other function
single_fold_loaded_artifacts = load_single_model_artifact(
model_path=abs_model_path,
config_path=abs_config_path,
input_size_path=abs_input_size_path,
target_scaler_path=abs_scaler_path
)
if single_fold_loaded_artifacts:
# Add fold_id for reference
single_fold_loaded_artifacts['fold_id'] = fold_id
loaded_fold_artifacts.append(single_fold_loaded_artifacts)
logger.info(f"Successfully loaded artifacts for fold {fold_id}.")
# --- Consistency Check (Optional but Recommended) ---
# Store the feature config and target col from the first successful fold
# Then compare subsequent folds against these
current_feature_config = single_fold_loaded_artifacts['feature_config']
current_target_col = single_fold_loaded_artifacts['main_forecasting_config'].data.target_col
if common_feature_config is None:
common_feature_config = current_feature_config
common_target_col = current_target_col
logger.debug(f"Set common feature config and target column based on fold {fold_id}.")
else:
# Compare crucial feature engineering aspects
if common_feature_config.sequence_length != current_feature_config.sequence_length or \
set(common_feature_config.forecast_horizon) != set(current_feature_config.forecast_horizon) or \
common_feature_config.scaling_method != current_feature_config.scaling_method: # Add more checks if needed
logger.error(f"Fold {fold_id}: Feature configuration mismatch with previous folds. Cannot proceed with this ensemble definition.")
# You might want to compare more fields like lags, rolling_windows etc.
return None # Fail hard if configs are inconsistent
if common_target_col != current_target_col:
logger.error(f"Fold {fold_id}: Target column '{current_target_col}' differs from previous folds ('{common_target_col}'). Cannot proceed.")
return None # Fail hard
else:
logger.error(f"Failed to load artifacts for fold {fold_id}. Skipping fold.")
# Decide if ensemble loading should fail if *any* fold fails
# For now, we continue and will check if enough folds loaded later
except TypeError as e:
# Catch potential errors if paths are None or invalid types
logger.error(f"Fold {fold_id}: Error constructing artifact paths - check definition file content: {e}", exc_info=True)
continue
except Exception as e:
logger.error(f"Fold {fold_id}: Unexpected error during loading: {e}", exc_info=True)
continue # Skip this fold
# --- Final Checks and Return ---
if not loaded_fold_artifacts:
logger.error("Failed to load artifacts for *any* fold in the ensemble.")
return None
# Add a check if a minimum number of folds is required (e.g., > 1)
if len(loaded_fold_artifacts) < 1: # Or maybe check against len(fold_models_definitions)?
logger.error(f"Only successfully loaded {len(loaded_fold_artifacts)} folds, which might be insufficient for the ensemble.")
# Decide if this is an error or just a warning
return None
if common_feature_config is None or common_target_col is None:
# This should not happen if loaded_fold_artifacts is not empty, but check anyway
logger.error("Internal error: Could not determine common feature config or target column for the ensemble.")
return None
logger.info(f"Successfully loaded artifacts for {len(loaded_fold_artifacts)} ensemble folds.")
return {
'ensemble_method': ensemble_method,
'fold_artifacts': loaded_fold_artifacts, # List of dicts
'ensemble_feature_config': common_feature_config, # The common config
'ensemble_target_col': common_target_col # The common target column name
}

View File

@ -0,0 +1,18 @@
from pydantic import BaseModel, Field
from typing import List, Optional, Literal
class ModelEvalConfig(BaseModel):
"""Configuration for evaluating a single forecasting model or an ensemble."""
name: str = Field(..., description="Name of the forecasting model or ensemble.")
type: Literal['model', 'ensemble'] = Field(..., description="Type of evaluation artifact: 'model' for a single checkpoint, 'ensemble' for an ensemble definition JSON.")
model_path: str = Field(..., description="Path to the saved PyTorch model file (.ckpt for type='model') or the ensemble definition JSON file (.json for type='ensemble').")
model_config_path: str = Field(..., description="Path to the forecasting config (YAML) used for this model training (or for the best trial in an ensemble).")
target_scaler_path: Optional[str] = Field(None, description="Path to the target scaler file for the single model (or will be loaded per fold for ensemble).")
class OptimizationRunConfig(BaseModel):
"""Main configuration for running battery optimization with multiple models/ensembles."""
initial_b: float = Field(..., description="Initial state of charge of the battery (MWh).")
max_capacity: float = Field(..., description="Maximum energy capacity of the battery (MWh).")
max_rate: float = Field(..., description="Maximum charge/discharge power rate of the battery (MW).")
optimization_horizon_hours: int = Field(24, gt=0, description="The length of the time window (in hours) for optimization.")
models: List[ModelEvalConfig] = Field(..., description="List of forecasting models or ensembles to evaluate.")