intermediate backup
This commit is contained in:
287
forecasting_model/train/model.py
Normal file
287
forecasting_model/train/model.py
Normal file
@ -0,0 +1,287 @@
|
||||
import logging
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import pytorch_lightning as pl
|
||||
import torchmetrics
|
||||
from typing import Optional, Dict, Any, Union, List, Tuple
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
||||
|
||||
# Assuming config_model is in sibling directory utils/
|
||||
from forecasting_model.utils.forecast_config_model import ModelConfig, TrainingConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class LSTMForecastLightningModule(pl.LightningModule):
|
||||
"""
|
||||
PyTorch Lightning Module for LSTM-based time series forecasting.
|
||||
|
||||
Encapsulates the model architecture, training, validation, and test logic.
|
||||
Uses torchmetrics for efficient metric calculation.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
model_config: ModelConfig,
|
||||
train_config: TrainingConfig,
|
||||
input_size: int,
|
||||
target_scaler: Optional[Union[StandardScaler, MinMaxScaler]] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# --- Validate & Store Configs ---
|
||||
if input_size <= 0:
|
||||
raise ValueError("`input_size` must be provided as a positive integer during model instantiation.")
|
||||
self._input_size = input_size # Use a temporary attribute
|
||||
|
||||
# Ensure forecast_horizon is a valid list in the config
|
||||
if not hasattr(model_config, 'forecast_horizon') or \
|
||||
not isinstance(model_config.forecast_horizon, list) or \
|
||||
not model_config.forecast_horizon or \
|
||||
any(h <= 0 for h in model_config.forecast_horizon):
|
||||
raise ValueError("ModelConfig requires `forecast_horizon` to be a non-empty list of positive integers.")
|
||||
|
||||
# Output size is the number of horizons we predict
|
||||
self.output_size = len(model_config.forecast_horizon)
|
||||
# Store the actual horizon list for reference if needed, ensure sorted
|
||||
self.forecast_horizons = sorted(model_config.forecast_horizon)
|
||||
|
||||
self.model_config = model_config
|
||||
self.train_config = train_config
|
||||
self.target_scaler = target_scaler # Store scaler for this fold
|
||||
|
||||
# Use save_hyperparameters() - forecast_horizon is part of model_config which is saved
|
||||
self.save_hyperparameters('model_config', 'train_config', 'input_size', ignore=['target_scaler'])
|
||||
# Note: Pydantic models might not be perfectly saved/loaded by PL's hparams, check if needed.
|
||||
# If issues arise loading, might need to flatten relevant hparams manually.
|
||||
|
||||
# --- Define Model Layers ---
|
||||
self.lstm = nn.LSTM(
|
||||
input_size=self.hparams.input_size,
|
||||
hidden_size=self.hparams.model_config.hidden_size,
|
||||
num_layers=self.hparams.model_config.num_layers,
|
||||
batch_first=True,
|
||||
dropout=self.hparams.model_config.dropout if self.hparams.model_config.num_layers > 1 else 0.0
|
||||
)
|
||||
self.dropout = nn.Dropout(self.hparams.model_config.dropout)
|
||||
|
||||
# Output layer maps LSTM hidden state to the number of forecast horizons
|
||||
self.fc = nn.Linear(self.hparams.model_config.hidden_size, self.output_size)
|
||||
|
||||
# Optional residual connection handling
|
||||
self.use_residual_skips = self.hparams.model_config.use_residual_skips
|
||||
self.residual_projection = None
|
||||
if self.use_residual_skips:
|
||||
# If input size doesn't match hidden size, project input
|
||||
if self.hparams.input_size != self.hparams.model_config.hidden_size:
|
||||
# Use hparams.input_size here
|
||||
self.residual_projection = nn.Linear(self.hparams.input_size, self.hparams.model_config.hidden_size)
|
||||
logger.info("Residual connections enabled.")
|
||||
if self.residual_projection:
|
||||
logger.info("Residual projection layer added.")
|
||||
|
||||
# --- Define Loss Function ---
|
||||
if self.hparams.train_config.loss_function.upper() == 'MSE':
|
||||
self.criterion = nn.MSELoss()
|
||||
elif self.hparams.train_config.loss_function.upper() == 'MAE':
|
||||
self.criterion = nn.L1Loss()
|
||||
else:
|
||||
raise ValueError(f"Unsupported loss function: {self.hparams.train_config.loss_function}")
|
||||
|
||||
# --- Define Metrics (TorchMetrics) ---
|
||||
metrics = torchmetrics.MetricCollection([
|
||||
torchmetrics.MeanAbsoluteError(),
|
||||
torchmetrics.MeanSquaredError(squared=False) # RMSE
|
||||
])
|
||||
self.train_metrics = metrics.clone(prefix='train_')
|
||||
self.val_metrics = metrics.clone(prefix='val_')
|
||||
self.test_metrics = metrics.clone(prefix='test_')
|
||||
|
||||
self.val_MeanAbsoluteError_Original_Scale = torchmetrics.MeanAbsoluteError()
|
||||
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass through the LSTM network.
|
||||
|
||||
Args:
|
||||
x: Input tensor of shape (batch_size, sequence_length, input_size)
|
||||
|
||||
Returns:
|
||||
Predictions tensor of shape (batch_size, len(forecast_horizons))
|
||||
where each element corresponds to a predicted horizon in sorted order.
|
||||
"""
|
||||
# LSTM forward pass
|
||||
lstm_out, (hidden, cell) = self.lstm(x) # Shape: (batch, seq_len, hidden_size)
|
||||
|
||||
# Output from the last time step
|
||||
last_time_step_out = lstm_out[:, -1, :] # Shape: (batch_size, hidden_size)
|
||||
|
||||
# Apply dropout
|
||||
last_time_step_out = self.dropout(last_time_step_out)
|
||||
|
||||
# Optional Residual Connection
|
||||
if self.use_residual_skips:
|
||||
residual = x[:, -1, :] # Input from the last time step: (batch_size, input_size)
|
||||
if self.residual_projection:
|
||||
residual = self.residual_projection(residual) # Project to hidden_size
|
||||
last_time_step_out = last_time_step_out + residual
|
||||
|
||||
# Final fully connected layer
|
||||
predictions = self.fc(last_time_step_out) # Shape: (batch_size, output_size/len(horizons))
|
||||
|
||||
return predictions # Shape: (batch_size, len(forecast_horizons))
|
||||
|
||||
def _calculate_loss(self, outputs, targets):
|
||||
# Shapes should now be (batch_size, len(horizons)) for both
|
||||
if outputs.shape != targets.shape:
|
||||
# Minimal check, dataset __getitem__ should ensure this
|
||||
raise ValueError(f"Output shape {outputs.shape} doesn't match target shape {targets.shape} for loss calculation.")
|
||||
return self.criterion(outputs, targets)
|
||||
|
||||
def _inverse_transform(self, data: torch.Tensor) -> Optional[torch.Tensor]:
|
||||
"""Helper to inverse transform data (preds or targets) using the stored target scaler."""
|
||||
if self.target_scaler is None:
|
||||
return None
|
||||
|
||||
data_cpu = data.detach().cpu().numpy().astype(np.float64)
|
||||
original_shape = data_cpu.shape # e.g., (batch_size, len(horizons))
|
||||
num_elements = data_cpu.size
|
||||
|
||||
# Scaler expects 2D input (N, 1)
|
||||
data_flat = data_cpu.reshape(num_elements, 1)
|
||||
|
||||
try:
|
||||
inversed_np = self.target_scaler.inverse_transform(data_flat)
|
||||
# Return as tensor on the original device, potentially reshaped
|
||||
inversed_tensor = torch.from_numpy(inversed_np).float().to(data.device)
|
||||
# Reshape back to original multi-horizon shape
|
||||
return inversed_tensor.reshape(original_shape)
|
||||
# return inversed_tensor.flatten() # Keep flat if needed for specific metric inputs
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to inverse transform data: {e}", exc_info=True)
|
||||
return None
|
||||
|
||||
|
||||
def training_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int) -> torch.Tensor:
|
||||
x, y = batch # Shapes: x=(batch, seq_len, features), y=(batch, len(horizons))
|
||||
outputs = self(x) # Scaled outputs: (batch, len(horizons))
|
||||
loss = self._calculate_loss(outputs, y)
|
||||
|
||||
# Log scaled metrics
|
||||
self.train_metrics.update(outputs, y)
|
||||
self.log('train_loss', loss, on_step=False, on_epoch=True, prog_bar=True, logger=True)
|
||||
self.log_dict(self.train_metrics, on_step=False, on_epoch=True, logger=True)
|
||||
|
||||
return loss
|
||||
|
||||
def validation_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int):
|
||||
x, y = batch
|
||||
outputs = self(x) # Scaled outputs
|
||||
loss = self._calculate_loss(outputs, y)
|
||||
|
||||
# Log scaled metrics
|
||||
self.val_metrics.update(outputs, y)
|
||||
self.log('val_loss', loss, on_step=False, on_epoch=True, prog_bar=True, logger=True)
|
||||
self.log_dict(self.val_metrics, on_step=False, on_epoch=True, logger=True)
|
||||
|
||||
# Log MAE on ORIGINAL scale (primary metric for checkpoints)
|
||||
if self.target_scaler is not None:
|
||||
# Inverse transform keeps the (batch, len(horizons)) shape
|
||||
outputs_inv = self._inverse_transform(outputs)
|
||||
y_inv = self._inverse_transform(y)
|
||||
|
||||
if outputs_inv is not None and y_inv is not None:
|
||||
# Ensure shapes match
|
||||
if outputs_inv.shape == y_inv.shape:
|
||||
# It will compute the average MAE across all elements if multi-dim
|
||||
self.val_MeanAbsoluteError_Original_Scale.update(outputs_inv, y_inv)
|
||||
self.log('val_MeanAbsoluteError_Original_Scale', self.val_MeanAbsoluteError_Original_Scale, on_step=False, on_epoch=True, prog_bar=True, logger=True)
|
||||
else:
|
||||
logger.warning(f"Shape mismatch after inverse transform in validation: Preds {outputs_inv.shape}, Targets {y_inv.shape}")
|
||||
else:
|
||||
logger.warning("Could not compute original scale MAE in validation due to inverse transform failure.")
|
||||
|
||||
|
||||
def test_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int):
|
||||
# Optional: Keep this method ONLY if you want trainer.test() to log metrics.
|
||||
# For getting predictions for evaluation, use predict_step.
|
||||
# If evaluate_fold_predictions handles all metrics, this can be simplified or removed.
|
||||
# Let's simplify it for now to only log loss if needed.
|
||||
try:
|
||||
x, y = batch
|
||||
outputs = self(x)
|
||||
loss = self._calculate_loss(outputs, y)
|
||||
# Log scaled test metrics if you still want trainer.test() to report them
|
||||
metrics = self.test_metrics(outputs, y)
|
||||
self.log('test_loss_step', loss, on_step=True, on_epoch=False) # Log step loss if needed
|
||||
self.log_dict(self.test_metrics, on_step=False, on_epoch=True, logger=True)
|
||||
# No return needed if just logging
|
||||
except Exception as e:
|
||||
logger.error(f"Error occurred in test_step for batch {batch_idx}: {e}", exc_info=True)
|
||||
# Optionally log something to indicate failure
|
||||
|
||||
def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> Dict[str, torch.Tensor]:
|
||||
"""
|
||||
Runs inference for prediction and returns scaled predictions and targets.
|
||||
'batch' might contain only features depending on the DataLoader setup for predict.
|
||||
Let's assume the test_loader yields (x, y) pairs for convenience here.
|
||||
"""
|
||||
if isinstance(batch, (list, tuple)) and len(batch) == 2:
|
||||
x, y = batch
|
||||
else:
|
||||
# Assume batch contains only features if not a pair
|
||||
x = batch
|
||||
y = None # No targets available during prediction if dataloader only yields features
|
||||
|
||||
outputs = self(x) # Scaled outputs
|
||||
|
||||
result = {'preds_scaled': outputs.detach().cpu()}
|
||||
if y is not None:
|
||||
# Include targets if they were part of the batch (e.g., using test_loader for predict)
|
||||
result['targets_scaled'] = y.detach().cpu()
|
||||
|
||||
return result
|
||||
|
||||
def configure_optimizers(self) -> Union[optim.Optimizer, Tuple[List[optim.Optimizer], List[Dict[str, Any]]]]:
|
||||
"""
|
||||
Configure the optimizer (Adam) and optional LR scheduler.
|
||||
"""
|
||||
optimizer = optim.Adam(
|
||||
self.parameters(),
|
||||
lr=self.hparams.train_config.learning_rate # Access lr via hparams
|
||||
)
|
||||
logger.info(f"Configured Adam optimizer with LR: {self.hparams.train_config.learning_rate}")
|
||||
|
||||
# Optional LR Scheduler configuration
|
||||
scheduler_config = None
|
||||
if hasattr(self.hparams.train_config, 'scheduler_step_size') and \
|
||||
self.hparams.train_config.scheduler_step_size is not None and \
|
||||
hasattr(self.hparams.train_config, 'scheduler_gamma') and \
|
||||
self.hparams.train_config.scheduler_gamma is not None:
|
||||
|
||||
if self.hparams.train_config.scheduler_step_size > 0 and 0 < self.hparams.train_config.scheduler_gamma < 1:
|
||||
logger.info(f"Configuring StepLR scheduler with step_size={self.hparams.train_config.scheduler_step_size} "
|
||||
f"and gamma={self.hparams.train_config.scheduler_gamma}")
|
||||
scheduler = optim.lr_scheduler.StepLR(
|
||||
optimizer,
|
||||
step_size=self.hparams.train_config.scheduler_step_size,
|
||||
gamma=self.hparams.train_config.scheduler_gamma
|
||||
)
|
||||
scheduler_config = {
|
||||
'scheduler': scheduler,
|
||||
'interval': 'epoch', # or 'step'
|
||||
'frequency': 1,
|
||||
'monitor': 'val_loss', # Optional: Only step if monitor improves (for ReduceLROnPlateau)
|
||||
}
|
||||
else:
|
||||
logger.warning("Scheduler parameters provided but invalid (step_size must be >0, 0<gamma<1). No scheduler configured.")
|
||||
|
||||
# Example for ReduceLROnPlateau (if needed later)
|
||||
# scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=5)
|
||||
# scheduler_config = {'scheduler': scheduler, 'monitor': 'val_loss'}
|
||||
|
||||
if scheduler_config:
|
||||
return [optimizer], [scheduler_config]
|
||||
else:
|
||||
return optimizer
|
Reference in New Issue
Block a user