2020-03-18 13:13:51 +01:00

28 lines
803 B
Python

import torch
import torch.nn as nn
class Subspectrogram(object):
def __init__(self, height, hop_size):
self.height = height
self.hop_size = hop_size
def __call__(self, sample):
if len(sample.shape) < 3:
sample = sample.unsqueeze(0)
# sample shape: 1 x num_mels x num_frames
sub_specs = []
for i in range(0, sample.shape[1], self.hop_size):
sub_spec = sample[:, i:i+self.hop_size:,]
sub_specs.append(sub_spec)
return np.concatenate(sub_specs)
if __name__ == '__main__':
import numpy as np
sub_spec_tnfm = Subspectrogram(20, 10)
X = np.random.rand(1, 60, 40)
Y = sub_spec_tnfm(X)
print(f'\t Sub-Spectrogram transformation from shape {X.shape} to {Y.shape}')
print('Done ...')