initial commit

This commit is contained in:
Robert Müller 2020-03-18 13:09:39 +01:00
parent d89a5ee54c
commit 6ed6e2f38d
6 changed files with 324 additions and 0 deletions

12
cfg.py Normal file
View File

@ -0,0 +1,12 @@
from pathlib import Path
import torch
BATCH_SIZE = 128
NUM_EPOCHS = 50
NUM_WORKERS = 4
NUM_SEGMENTS = 5
NUM_SEGMENT_HOPS = 2
SEEDS = [42, 1337]
ALL_DATASET_PATHS = list((Path(__file__).parent.absolute() / 'data' / 'mimii').glob('*/'))
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'

64
main.py Normal file
View File

@ -0,0 +1,64 @@
import numpy as np
from tqdm import tqdm
from cfg import *
from mimii import MIMII
from models.ae import AE, LCAE
import torch.nn as nn
import torch.optim as optim
import random
torch.manual_seed(42)
torch.cuda.manual_seed(42)
np.random.seed(42)
random.seed(42)
dataset_path = ALL_DATASET_PATHS[5]
print(f'Training on {dataset_path.name}')
mimii = MIMII(dataset_path=ALL_DATASET_PATHS[5], machine_id=0)
mimii.preprocess(n_fft=1024, hop_length=512, n_mels=64, center=False, power=2.0)
dl = mimii.train_dataloader(
segment_len=NUM_SEGMENTS,
hop_len=NUM_SEGMENT_HOPS,
batch_size=BATCH_SIZE,
num_workers=NUM_WORKERS,
shuffle=True
)
model = LCAE(320).to(DEVICE)
model.init_weights()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
beta_1 = 0.00
beta_2 = 0.0
for epoch in range(NUM_EPOCHS):
print(f'EPOCH #{epoch+1}')
losses = []
entropies = []
l1s = []
for batch in tqdm(dl):
data, labels = batch
data = data.to(DEVICE)
data = data.view(data.shape[0], -1)
preds, entropy, diversity = model(data)
loss = criterion(preds, data) + beta_1*entropy.mean() + beta_2*diversity
optimizer.zero_grad()
loss.backward()
optimizer.step()
#print(reconstruction.shape)
losses.append(loss.item())
entropies.append(entropy.mean().item())
l1s.append(diversity.item())
print(f'Loss: {np.mean(losses)}; Entropy: {np.mean(entropies)}; l1:{np.mean(l1s)}')
auc = mimii.evaluate_model(model, NUM_SEGMENTS, NUM_SEGMENTS)
print(f'AUC: {auc}')

128
mimii.py Normal file
View File

@ -0,0 +1,128 @@
import random
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader, ConcatDataset
import librosa
from sklearn.metrics import roc_auc_score
from tqdm import tqdm
from pathlib import Path
__all__ = ['MIMII']
class MIMII(object):
def __init__(self, dataset_path, machine_id, seed=42):
torch.random.manual_seed(seed)
np.random.seed(seed)
self.machine = dataset_path.name
self.machine_id = machine_id
self.root = dataset_path / f'id_0{machine_id}'
self.min_level_db = -80
self.sr = 16000
train = list((self.root / 'normal' / 'processed').glob('*.npy'))
test = list((self.root / 'abnormal' / 'processed').glob('*.npy'))
random.shuffle(train)
normal_test = train[:len(test)]
self.test_labels = [0]*len(normal_test) + [1]*len(test)
self.train_labels = [0]*(len(train) - len(normal_test))
self.train_paths = train[len(test):]
self.test_paths = normal_test + test
def _normalize(self, S):
return np.clip((S - self.min_level_db) / -self.min_level_db, 0, 1)
def _denormalize(self, S):
return (np.clip(S, 0, 1) * -self.min_level_db) + self.min_level_db
def preprocess(self, **kwargs):
for mode in ['normal', 'abnormal']:
folder = (self.root / mode / 'processed')
folder.mkdir(parents=False, exist_ok=True)
wavs = (self.root / mode).glob('*.wav')
print(f' Processing {folder}')
for file in tqdm(list(wavs)):
# (folder / file.stem).mkdir(parents=False, exist_ok=True)
audio, sr = librosa.load(str(file), sr=self.sr)
mel_spec = librosa.feature.melspectrogram(audio, sr=sr, **kwargs)
mel_spec_db = librosa.amplitude_to_db(mel_spec, ref=np.max)
mel_spec_norm = self._normalize(mel_spec_db)
m, n = mel_spec_norm.shape
np.save(folder/(file.stem + f'_{m}_{n}.npy'), mel_spec_norm)
def train_dataloader(self, segment_len=20, hop_len=5, **kwargs):
# return both!!!
# todo exclude a part and save for eval
ds = []
for p, l in zip(self.train_paths, self.train_labels):
ds.append(
MimiiTorchDataset(path=p, label=l,
segment_len=segment_len,
hop=hop_len)
)
return DataLoader(ConcatDataset(ds), **kwargs)
def test_dataloader(self, *args, **kwargs):
raise NotImplementedError('test_dataloader is not supported')
def evaluate_model(self, f, segment_len=20, hop_len=5):
datasets = []
for p, l in zip(self.test_paths, self.test_labels):
datasets.append(
MimiiTorchDataset(path=p, label=l,
segment_len=segment_len,
hop=hop_len)
)
y_true, y_score = [], []
with torch.no_grad():
for dataset in tqdm(datasets):
loader = DataLoader(dataset, batch_size=300, shuffle=False, num_workers=2)
file_preds = []
for batch in loader:
data, labels = batch
data = data.to('cuda')
data = data.view(data.shape[0], -1)
y_hat, entropy, diversity = f(data)
preds = torch.sum((y_hat - data) ** 2, dim=tuple(range(1, y_hat.dim())))
file_preds += preds.cpu().data.tolist()
y_true.append(labels.max().item())
y_score .append(np.mean(file_preds))
return roc_auc_score(y_true, y_score)
class MimiiTorchDataset(Dataset):
def __init__(self, path, segment_len, hop, label):
self.path = path
self.segment_len = segment_len
self.m, self.n = str(path).split('_')[-2:] # get spectrogram dimensions
self.n = int(self.n.split('.', 1)[0]) # remove .npy
self.m, self.n = (int(i) for i in (self.m, self.n))
self.offsets = list(range(0, self.n - segment_len, hop))
self.label = label
def __getitem__(self, item):
start = self.offsets[item]
mel_spec = np.load(self.path)
snippet = mel_spec[:, start: start + self.segment_len]
return snippet, self.label
def __len__(self):
return len(self.offsets)
class MimiiTorchTestDataset(MimiiTorchDataset):
def __init__(self, *arg, **kwargs):
super(MimiiTorchTestDataset, self).__init__(*arg, **kwargs)
def __getitem__(self, item):
x = super.__init__(item)
return x, self.path

0
models/__init__.py Normal file
View File

93
models/ae.py Normal file
View File

@ -0,0 +1,93 @@
import torch
import torch.nn as nn
import torch.functional as F
class AE(nn.Module):
def __init__(self, in_dim=320):
super(AE, self).__init__()
self.net = nn.Sequential(
nn.Linear(in_dim, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, 8),
nn.ReLU(),
nn.Linear(8, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, 320),
nn.ReLU(),
)
def forward(self, data):
return self.net(data)
def init_weights(self):
def _weight_init(m):
if hasattr(m, 'weight'):
if isinstance(m.weight, torch.Tensor):
torch.nn.init.xavier_uniform_(m.weight,
gain=nn.init.calculate_gain('relu'))
if hasattr(m, 'bias'):
if isinstance(m.bias, torch.Tensor):
m.bias.data.fill_(0.01)
self.apply(_weight_init)
class LCAE(nn.Module):
def __init__(self, in_dim=320):
super(LCAE, self).__init__()
num_mem = 10
mem_size= 8
self.num_mem = num_mem
self.encode = nn.Sequential(
nn.Linear(in_dim, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, num_mem),
nn.Softmax(-1)
)
self.decode = nn.Sequential(
nn.Linear(mem_size, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, 320),
nn.ReLU(),
)
self.M = nn.Parameter(
torch.randn(num_mem, mem_size)
)
def forward(self, data):
alphas = self.encode(data).unsqueeze(-1)
entropy_alphas = (alphas * -alphas.log()).sum(1)
M = self.M.expand(data.shape[0], *self.M.shape)
#print(M.shape, alphas.shape) # torch.Size([128, 4, 8]) torch.Size([128, 4, 1])
elu = nn.ELU()
weighted = alphas * (1+elu(M+1e-13))
#print(weighted.shape)
summed = weighted.sum(1)
#print(summed.shape)
decoded = self.decode(summed)
diversity = (alphas.sum(dim=0)/data.shape[0]).max()
#print(alphas[0])
return decoded, entropy_alphas, diversity
def init_weights(self):
def _weight_init(m):
if hasattr(m, 'weight'):
if isinstance(m.weight, torch.Tensor):
torch.nn.init.xavier_uniform_(m.weight,
gain=nn.init.calculate_gain('relu'))
if hasattr(m, 'bias'):
if isinstance(m.bias, torch.Tensor):
m.bias.data.fill_(0.01)
self.apply(_weight_init)

27
models/layers.py Normal file
View File

@ -0,0 +1,27 @@
import torch
import torch.nn as nn
class Subspectrogram(object):
def __init__(self, height, hop_size):
self.height = height
self.hop_size = hop_size
def __call__(self, sample):
if len(sample.shape) < 3:
sample = sample.unsqueeze(0)
# sample shape: 1 x num_mels x num_frames
sub_specs = []
for i in range(0, sample.shape[1], self.hop_size):
sub_spec = sample[:, i:i+self.hop_size:,]
sub_specs.append(sub_spec)
return np.concatenate(sub_specs)
if __name__ == '__main__':
import numpy as np
sub_spec_tnfm = Subspectrogram(20, 10)
X = np.random.rand(1, 60, 40)
Y = sub_spec_tnfm(X)
print(f'\t Sub-Spectrogram transformation from shape {X.shape} to {Y.shape}')