big update

This commit is contained in:
Robert Müller
2020-04-06 14:46:26 +02:00
parent 0f325676e5
commit 482f45df87
17 changed files with 1027 additions and 32 deletions

View File

@ -0,0 +1,149 @@
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Dataset
import torch.nn as nn
from PIL import Image
from tqdm import tqdm
import pandas as pd
class FeatureExtractor:
supported_extractors = ['resnet18', 'resnet34', 'resnet50',
'alexnet_fc6', 'alexnet_fc7', 'vgg16',
'densenet121', 'inception_v3', 'squeezenet']
def __init__(self, version='resnet18', device='cpu'):
assert version.lower() in self.supported_extractors
self.device = device
self.version = version
self.F = self.__choose_feature_extractor(version)
for param in self.F.parameters():
param.requires_grad = False
self.F.eval()
self.input_size = (299, 299) if version.lower() == 'inception' else (224, 224)
self.transforms = transforms.Compose([
transforms.Resize(self.input_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
def to(self, device):
self.device = device
self.F = self.F.to(self.device)
return self
def __choose_feature_extractor(self, version):
if 'resnet' in version.lower():
v = int(version[-2:])
if v == 18:
resnet = torchvision.models.resnet18(pretrained=True)
elif v == 34:
resnet = torchvision.models.resnet34(pretrained=True)
elif v == 50:
resnet = torchvision.models.resnet50(pretrained=True)
return nn.Sequential(*list(resnet.children())[:-1])
elif 'alexnet' in version.lower():
v = int(version[-1])
alexnet = torchvision.models.alexnet(pretrained=True)
if v == 7:
f = nn.Sequential(*list(alexnet.classifier.children())[:-2])
elif v == 6:
f = nn.Sequential(*list(alexnet.classifier.children())[:-5])
alexnet.classifier = f
return alexnet
elif version.lower() == 'vgg16':
vgg = torchvision.models.vgg16_bn(pretrained=True)
classifier = list(
vgg.classifier.children())[:4]
vgg.classifier = nn.Sequential(*classifier)
return vgg
elif version.lower() == 'densenet121':
densenet = torchvision.models.densenet121(pretrained=True)
avg_pool = nn.AvgPool2d(kernel_size=7)
densenet = nn.Sequential(*list(densenet.children())[:-1])
densenet.add_module('avg_pool', avg_pool)
return densenet
elif version.lower() == 'inception_v3':
inception = torchvision.models.inception_v3(pretrained=True)
f = nn.Sequential(*list(inception.children())[:-1])
f._modules.pop('13')
f.add_module('global average', nn.AvgPool2d(26))
return f
elif version.lower() == 'squeezenet':
squeezenet = torchvision.models.squeezenet1_1(pretrained=True)
f = torch.nn.Sequential(
squeezenet.features,
torch.nn.AdaptiveAvgPool2d(output_size=(2, 2))
)
return f
else:
raise NotImplementedError('The feature extractor you requested is not yet supported')
@property
def feature_size(self):
x = torch.randn(size=(1, 3, *self.input_size)).to(self.device)
return self.F(x).squeeze().shape[0]
def __call__(self, batch):
batch = self.transforms(batch)
if len(batch.shape) <= 3:
batch = batch.unsqueeze(0)
return self.F(batch).view(batch.shape[0], -1).squeeze()
def from_image_folder(self, folder_path, extension='jpg'):
sorted_files = sorted(list(folder_path.glob(f'*.{extension}')))
split_names = [x.stem.split('_') for x in sorted_files]
names = [x[0] for x in split_names]
seq_ids = [x[1] for x in split_names]
X = []
for i, p_img in enumerate(tqdm(sorted_files)):
x = Image.open(p_img)
features = self(x)
X.append([names[i], seq_ids[i]] + features.tolist())
return pd.DataFrame(X, columns=['name', 'seq_id', *(f'feature_{i}' for i in range(self.feature_size))])
class AudioTransferLearningImageDataset(Dataset):
def __init__(self, root_or_files, extension='jpg', input_size=224):
self.root_or_files = root_or_files
if type(root_or_files) == list:
self.files = root_or_files
else:
self.files = list(self.root.glob(f'*.{extension}'))
self.transforms = transforms.Compose([
transforms.Resize(input_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
def process_name(self, name):
split_name = name.stem.split('_')
return split_name[0], split_name[1] #name, seq_id
def __getitem__(self, item):
p_img = self.files[item]
x = Image.open(p_img)
x = self.transforms(x)
name, seq_id = self.process_name(p_img)
return x, name, seq_id
def __len__(self):
return len(self.files)
if __name__ == '__main__':
from pathlib import Path
version='resnet18'
extractor = FeatureExtractor(version=version)
models = ['slider', 'pump', 'fan']
model_ids = [0, 2, 4, 6]
for model in models:
for model_id in model_ids:
df = extractor.from_image_folder(Path( f'/home/robert/coding/audio_anomaly_detection/data/mimii/-6_dB_{model}/id_0{model_id}/normal/melspec_images/'))
df.to_csv(Path(f'/home/robert/coding/audio_anomaly_detection/data/mimii/-6_dB_{model}/id_0{model_id}/normal/{version}_features.csv'), index=False)
del df
df = extractor.from_image_folder(Path( f'/home/robert/coding/audio_anomaly_detection/data/mimii/-6_dB_{model}/id_0{model_id}/abnormal/melspec_images/'))
df.to_csv(Path(f'/home/robert/coding/audio_anomaly_detection/data/mimii/-6_dB_{model}/id_0{model_id}/abnormal/{version}_features.csv'), index=False)