big update
This commit is contained in:
0
transfer_learning/__init__.py
Normal file
0
transfer_learning/__init__.py
Normal file
149
transfer_learning/extractors.py
Normal file
149
transfer_learning/extractors.py
Normal file
@@ -0,0 +1,149 @@
|
||||
import torch
|
||||
import torchvision
|
||||
import torchvision.transforms as transforms
|
||||
from torch.utils.data import Dataset
|
||||
import torch.nn as nn
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
import pandas as pd
|
||||
|
||||
|
||||
class FeatureExtractor:
|
||||
supported_extractors = ['resnet18', 'resnet34', 'resnet50',
|
||||
'alexnet_fc6', 'alexnet_fc7', 'vgg16',
|
||||
'densenet121', 'inception_v3', 'squeezenet']
|
||||
|
||||
def __init__(self, version='resnet18', device='cpu'):
|
||||
assert version.lower() in self.supported_extractors
|
||||
self.device = device
|
||||
self.version = version
|
||||
self.F = self.__choose_feature_extractor(version)
|
||||
for param in self.F.parameters():
|
||||
param.requires_grad = False
|
||||
self.F.eval()
|
||||
self.input_size = (299, 299) if version.lower() == 'inception' else (224, 224)
|
||||
self.transforms = transforms.Compose([
|
||||
transforms.Resize(self.input_size),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
||||
std=[0.229, 0.224, 0.225])
|
||||
])
|
||||
|
||||
def to(self, device):
|
||||
self.device = device
|
||||
self.F = self.F.to(self.device)
|
||||
return self
|
||||
|
||||
def __choose_feature_extractor(self, version):
|
||||
if 'resnet' in version.lower():
|
||||
v = int(version[-2:])
|
||||
if v == 18:
|
||||
resnet = torchvision.models.resnet18(pretrained=True)
|
||||
elif v == 34:
|
||||
resnet = torchvision.models.resnet34(pretrained=True)
|
||||
elif v == 50:
|
||||
resnet = torchvision.models.resnet50(pretrained=True)
|
||||
return nn.Sequential(*list(resnet.children())[:-1])
|
||||
elif 'alexnet' in version.lower():
|
||||
v = int(version[-1])
|
||||
alexnet = torchvision.models.alexnet(pretrained=True)
|
||||
if v == 7:
|
||||
f = nn.Sequential(*list(alexnet.classifier.children())[:-2])
|
||||
elif v == 6:
|
||||
f = nn.Sequential(*list(alexnet.classifier.children())[:-5])
|
||||
alexnet.classifier = f
|
||||
return alexnet
|
||||
elif version.lower() == 'vgg16':
|
||||
vgg = torchvision.models.vgg16_bn(pretrained=True)
|
||||
classifier = list(
|
||||
vgg.classifier.children())[:4]
|
||||
vgg.classifier = nn.Sequential(*classifier)
|
||||
return vgg
|
||||
elif version.lower() == 'densenet121':
|
||||
densenet = torchvision.models.densenet121(pretrained=True)
|
||||
avg_pool = nn.AvgPool2d(kernel_size=7)
|
||||
densenet = nn.Sequential(*list(densenet.children())[:-1])
|
||||
densenet.add_module('avg_pool', avg_pool)
|
||||
return densenet
|
||||
elif version.lower() == 'inception_v3':
|
||||
inception = torchvision.models.inception_v3(pretrained=True)
|
||||
f = nn.Sequential(*list(inception.children())[:-1])
|
||||
f._modules.pop('13')
|
||||
f.add_module('global average', nn.AvgPool2d(26))
|
||||
return f
|
||||
elif version.lower() == 'squeezenet':
|
||||
squeezenet = torchvision.models.squeezenet1_1(pretrained=True)
|
||||
f = torch.nn.Sequential(
|
||||
squeezenet.features,
|
||||
torch.nn.AdaptiveAvgPool2d(output_size=(2, 2))
|
||||
)
|
||||
return f
|
||||
else:
|
||||
raise NotImplementedError('The feature extractor you requested is not yet supported')
|
||||
|
||||
|
||||
@property
|
||||
def feature_size(self):
|
||||
x = torch.randn(size=(1, 3, *self.input_size)).to(self.device)
|
||||
return self.F(x).squeeze().shape[0]
|
||||
|
||||
def __call__(self, batch):
|
||||
batch = self.transforms(batch)
|
||||
if len(batch.shape) <= 3:
|
||||
batch = batch.unsqueeze(0)
|
||||
return self.F(batch).view(batch.shape[0], -1).squeeze()
|
||||
|
||||
def from_image_folder(self, folder_path, extension='jpg'):
|
||||
sorted_files = sorted(list(folder_path.glob(f'*.{extension}')))
|
||||
split_names = [x.stem.split('_') for x in sorted_files]
|
||||
names = [x[0] for x in split_names]
|
||||
seq_ids = [x[1] for x in split_names]
|
||||
X = []
|
||||
for i, p_img in enumerate(tqdm(sorted_files)):
|
||||
x = Image.open(p_img)
|
||||
features = self(x)
|
||||
X.append([names[i], seq_ids[i]] + features.tolist())
|
||||
return pd.DataFrame(X, columns=['name', 'seq_id', *(f'feature_{i}' for i in range(self.feature_size))])
|
||||
|
||||
|
||||
class AudioTransferLearningImageDataset(Dataset):
|
||||
def __init__(self, root_or_files, extension='jpg', input_size=224):
|
||||
self.root_or_files = root_or_files
|
||||
if type(root_or_files) == list:
|
||||
self.files = root_or_files
|
||||
else:
|
||||
self.files = list(self.root.glob(f'*.{extension}'))
|
||||
self.transforms = transforms.Compose([
|
||||
transforms.Resize(input_size),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
||||
std=[0.229, 0.224, 0.225])
|
||||
])
|
||||
|
||||
def process_name(self, name):
|
||||
split_name = name.stem.split('_')
|
||||
return split_name[0], split_name[1] #name, seq_id
|
||||
|
||||
def __getitem__(self, item):
|
||||
p_img = self.files[item]
|
||||
x = Image.open(p_img)
|
||||
x = self.transforms(x)
|
||||
name, seq_id = self.process_name(p_img)
|
||||
return x, name, seq_id
|
||||
|
||||
def __len__(self):
|
||||
return len(self.files)
|
||||
|
||||
if __name__ == '__main__':
|
||||
from pathlib import Path
|
||||
version='resnet18'
|
||||
extractor = FeatureExtractor(version=version)
|
||||
models = ['slider', 'pump', 'fan']
|
||||
model_ids = [0, 2, 4, 6]
|
||||
for model in models:
|
||||
for model_id in model_ids:
|
||||
df = extractor.from_image_folder(Path( f'/home/robert/coding/audio_anomaly_detection/data/mimii/-6_dB_{model}/id_0{model_id}/normal/melspec_images/'))
|
||||
df.to_csv(Path(f'/home/robert/coding/audio_anomaly_detection/data/mimii/-6_dB_{model}/id_0{model_id}/normal/{version}_features.csv'), index=False)
|
||||
del df
|
||||
df = extractor.from_image_folder(Path( f'/home/robert/coding/audio_anomaly_detection/data/mimii/-6_dB_{model}/id_0{model_id}/abnormal/melspec_images/'))
|
||||
df.to_csv(Path(f'/home/robert/coding/audio_anomaly_detection/data/mimii/-6_dB_{model}/id_0{model_id}/abnormal/{version}_features.csv'), index=False)
|
||||
134
transfer_learning/main.py
Normal file
134
transfer_learning/main.py
Normal file
@@ -0,0 +1,134 @@
|
||||
from cfg import ALL_DATASET_PATHS
|
||||
from pathlib import Path
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.mixture import GaussianMixture, BayesianGaussianMixture
|
||||
from sklearn.ensemble import IsolationForest
|
||||
from sklearn.svm import OneClassSVM
|
||||
from sklearn.neighbors import KernelDensity
|
||||
from sklearn.metrics import roc_auc_score
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
||||
from sklearn.decomposition import PCA
|
||||
from sklearn.pipeline import Pipeline
|
||||
from transfer_learning.extractors import AudioTransferLearningImageDataset, FeatureExtractor
|
||||
from torch.utils.data import DataLoader
|
||||
import torch.nn as nn
|
||||
from torch.optim import Adam
|
||||
from tqdm import tqdm
|
||||
from transfer_learning.my_model import MyModel
|
||||
import random
|
||||
np.random.seed(1337)
|
||||
random.seed(1337)
|
||||
|
||||
# Switch
|
||||
OURS = False
|
||||
# Parameters
|
||||
leave_n_out = 150
|
||||
model = 'fan'
|
||||
model_id = 0
|
||||
|
||||
# get all wav files
|
||||
wavs_normal = Path(f'/home/robert/coding/audio_anomaly_detection/data/mimii/-6_dB_{model}/id_0{model_id}/normal').glob('*.wav')
|
||||
wavs_abnormal = Path(f'/home/robert/coding/audio_anomaly_detection/data/mimii/-6_dB_{model}/id_0{model_id}/abnormal').glob('*.wav')
|
||||
|
||||
# as list + shuffle
|
||||
normal_files = list(wavs_normal)
|
||||
abnormal_files = list(wavs_abnormal)
|
||||
random.shuffle(normal_files)
|
||||
random.shuffle(abnormal_files)
|
||||
|
||||
normal_train_files = normal_files[leave_n_out:]
|
||||
normal_test_files = normal_files[:leave_n_out]
|
||||
|
||||
abnormal_test_files = abnormal_files[:leave_n_out]
|
||||
|
||||
print(len(normal_train_files), len(normal_test_files), len(normal_files))
|
||||
print(len(abnormal_test_files))
|
||||
|
||||
if not OURS:
|
||||
normal_df = pd.read_csv(Path(f'/home/robert/coding/audio_anomaly_detection/data/mimii/-6_dB_{model}/id_0{model_id}/normal/resnet18_features.csv'))
|
||||
abnormal_df = pd.read_csv(Path(f'/home/robert/coding/audio_anomaly_detection/data/mimii/-6_dB_{model}/id_0{model_id}/abnormal/resnet18_features.csv'))
|
||||
|
||||
print(normal_df.shape, abnormal_df.shape)
|
||||
|
||||
normal_trainset = normal_df[normal_df.name.isin([int(x.stem.split('_')[0]) for x in normal_train_files])]
|
||||
normal_testset = normal_df[normal_df.name.isin([int(x.stem.split('_')[0]) for x in normal_test_files])]
|
||||
abnormal_testset = abnormal_df[abnormal_df.name.isin([int(x.stem.split('_')[0]) for x in abnormal_test_files])]
|
||||
|
||||
print(f'normal train: {normal_trainset.shape}')
|
||||
print(f'normal test: {normal_testset.shape}')
|
||||
print(f'abnormal test: {abnormal_testset.shape}')
|
||||
|
||||
only_features = lambda x: x[:, 2:]
|
||||
|
||||
print(f'#Normal files:{len(normal_files)}\t#Abnormal files: {len(abnormal_files)}')
|
||||
print(f'#Normal test snippets normal: {len(normal_testset)}, #Abnormal test snippets: {len(abnormal_testset)}')
|
||||
|
||||
#model = BayesianGaussianMixture(n_components=64, max_iter=150, covariance_type='diag')
|
||||
#model = GaussianMixture(n_components=64, covariance_type='diag')
|
||||
#model = OneClassSVM(nu=1e-2)
|
||||
#model = IsolationForest(n_estimators=128, contamination='auto')
|
||||
model = KernelDensity(kernel='gaussian', bandwidth=0.1)
|
||||
scaler = Pipeline(
|
||||
[('Scaler', StandardScaler())]
|
||||
)
|
||||
X = only_features(normal_trainset.values)
|
||||
|
||||
scaler.fit(X)
|
||||
model.fit(scaler.transform(X))
|
||||
|
||||
scores_normal_test = model.score_samples(
|
||||
scaler.transform(only_features(normal_testset.values))
|
||||
)
|
||||
|
||||
scores_abnormal_test = model.score_samples(
|
||||
scaler.transform(only_features(abnormal_testset.values))
|
||||
)
|
||||
|
||||
normal_with_scores = normal_testset[['name', 'seq_id']].copy()
|
||||
normal_with_scores['score'] = -scores_normal_test
|
||||
normal_with_scores['label'] = 0
|
||||
normal_grouped = normal_with_scores.groupby(by=['name']).mean()
|
||||
|
||||
abnormal_with_scores = abnormal_testset[['name', 'seq_id']].copy()
|
||||
abnormal_with_scores['score'] = -scores_abnormal_test
|
||||
abnormal_with_scores['label'] = 0
|
||||
abnormal_grouped = abnormal_with_scores.groupby(by=['name']).mean()
|
||||
|
||||
scores_normal_grouped = normal_grouped.score.values.tolist()
|
||||
scores_abnormal_grouped = abnormal_grouped.score.values.tolist()
|
||||
|
||||
labels_normal = [0] * len(scores_normal_grouped)
|
||||
labels_abnormal = [1] * len(scores_abnormal_grouped)
|
||||
labels = labels_normal + labels_abnormal
|
||||
|
||||
scores = scores_normal_grouped + scores_abnormal_grouped
|
||||
|
||||
auc = roc_auc_score(y_score=scores, y_true=labels)
|
||||
print(auc)
|
||||
|
||||
else:
|
||||
dataset = AudioTransferLearningImageDataset(root_or_files=normal_train_files)
|
||||
dataloader = DataLoader(dataset, batch_size=80, shuffle=True)
|
||||
F = FeatureExtractor(version='resnet18').to('cuda')
|
||||
feature_size = F.feature_size
|
||||
criterion = nn.MSELoss()
|
||||
my_model = MyModel(F).to('cuda')
|
||||
|
||||
for e in range(0):
|
||||
losses = []
|
||||
for batch in tqdm(dataloader):
|
||||
imgs, names, seq_ids = batch
|
||||
imgs = imgs.to('cuda')
|
||||
prediction, target = my_model(imgs)
|
||||
loss = criterion(prediction, target)
|
||||
my_model.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
my_model.optimizer.step()
|
||||
losses.append(loss.item())
|
||||
print(sum(losses)/len(losses))
|
||||
|
||||
# test
|
||||
dataset = AudioTransferLearningImageDataset(root_or_files=normal_test_files)
|
||||
dataloader = DataLoader(dataset, batch_size=80, shuffle=False)
|
||||
my_model.scores_from_dataloader(dataloader)
|
||||
87
transfer_learning/my_model.py
Normal file
87
transfer_learning/my_model.py
Normal file
@@ -0,0 +1,87 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.optim import Adam
|
||||
|
||||
|
||||
class MyModel(nn.Module):
|
||||
def __init__(self, feature_extractor):
|
||||
super(MyModel, self).__init__()
|
||||
self.feature_extractor = feature_extractor
|
||||
feature_size = feature_extractor.feature_size
|
||||
self.noise = nn.Sequential(
|
||||
nn.Linear(feature_size, feature_size // 2),
|
||||
nn.ELU(),
|
||||
nn.Linear(feature_size // 2, feature_size // 4)
|
||||
)
|
||||
for p in self.noise.parameters():
|
||||
p.requires_grad = False
|
||||
self.noise.eval()
|
||||
|
||||
self.student = nn.Sequential(
|
||||
nn.Linear(feature_size, feature_size // 2),
|
||||
nn.ELU(),
|
||||
nn.Linear(feature_size // 2, feature_size // 4),
|
||||
nn.ELU(),
|
||||
nn.Linear(feature_size // 4, feature_size // 4)
|
||||
)
|
||||
self.optimizer = Adam(self.student.parameters(), lr=0.0001, weight_decay=1e-7, amsgrad=True)
|
||||
|
||||
def forward(self, imgs):
|
||||
features = self.feature_extractor.F(imgs).squeeze()
|
||||
target = self.noise(features)
|
||||
prediction = self.student(features)
|
||||
return target, prediction
|
||||
|
||||
|
||||
def scores_from_dataloader(self, dataloader):
|
||||
scores = []
|
||||
with torch.no_grad():
|
||||
for batch in dataloader:
|
||||
imgs, names, seq_ids = batch
|
||||
imgs = imgs.to('cuda')
|
||||
target, prediction = self.forward(imgs)
|
||||
preds = torch.sum((prediction - target) ** 2, dim=tuple(range(1, target.dim())))
|
||||
print(preds.shape)
|
||||
|
||||
|
||||
class HyperFraud(nn.Module):
|
||||
def __init__(self, hidden_dim=256):
|
||||
super(HyperFraud, self).__init__()
|
||||
self.hidden_dim = hidden_dim
|
||||
self.mean = torch.randn(size=(1, 512))
|
||||
self.std = torch.randn(size=(1, 512))
|
||||
|
||||
self.W_forget = nn.Sequential(
|
||||
nn.Linear(512, hidden_dim)
|
||||
)
|
||||
self.U_forget = nn.Sequential(
|
||||
nn.Linear(hidden_dim, hidden_dim)
|
||||
)
|
||||
self.W_hidden = nn.Sequential(
|
||||
nn.Linear(512, 256)
|
||||
)
|
||||
self.U_hidden = nn.Sequential(
|
||||
nn.Linear(hidden_dim, 256)
|
||||
)
|
||||
self.b_forget = nn.Parameter(torch.randn(1, hidden_dim))
|
||||
self.b_hidden = nn.Parameter(torch.randn(1, hidden_dim))
|
||||
|
||||
def forward(self, data, max_seq_len=10):
|
||||
# data. batch x seqs x dim
|
||||
# random seq sampling
|
||||
h_prev = [torch.zeros(size=(data.shape[0], self.hidden_dim))]
|
||||
for i in range(0, max_seq_len):
|
||||
x_t = data[:, i]
|
||||
h_t_prev = h_prev[-1]
|
||||
W_x_t = self.W_forget(x_t)
|
||||
U_h_prev = self.U_forget(h_t_prev)
|
||||
forget_t = torch.sigmoid(W_x_t + U_h_prev + self.b_forget)
|
||||
h_t = forget_t * h_t_prev + (1.0 - forget_t) * torch.tanh(self.W_hidden(x_t) + self.U_hidden(forget_t * h_t_prev) + self.b_hidden)
|
||||
h_prev.append(h_t)
|
||||
return torch.stack(h_prev[1:], dim=1)
|
||||
|
||||
|
||||
#hf = HyperFraud()
|
||||
#rand_input = torch.randn(size=(42, 10, 512))
|
||||
|
||||
#print(hf(rand_input).shape)
|
||||
82
transfer_learning/preprocessor.py
Normal file
82
transfer_learning/preprocessor.py
Normal file
@@ -0,0 +1,82 @@
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
import librosa
|
||||
import librosa.display
|
||||
from matplotlib import pyplot as plt
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class Preprocessor:
|
||||
def __init__(self, sr=16000, n_mels=64, n_fft=1024, hop_length=256, chunk_size=64, chunk_hop=32, cmap='viridis'):
|
||||
self.sr = sr
|
||||
self.n_fft = n_fft
|
||||
self.n_mels = n_mels
|
||||
self.hop_length = hop_length
|
||||
self.chunk_size = chunk_size
|
||||
self.chunk_hop = chunk_hop
|
||||
self.cmap = cmap
|
||||
|
||||
def process_audio(self, path, out_folder=None):
|
||||
mel_spec = self.to_mel_spec(path)
|
||||
for count, i in enumerate(range(0, mel_spec.shape[1], self.chunk_hop)):
|
||||
try:
|
||||
chunk = mel_spec[:, i:i+self.chunk_size]
|
||||
out_path = out_folder / f'{path.stem}_{count}.jpg'
|
||||
self.mel_spec_to_img(chunk, out_path) # todo must adjust outpath name
|
||||
except IndexError:
|
||||
pass
|
||||
|
||||
|
||||
def to_mel_spec(self, path):
|
||||
audio, sr = librosa.load(str(path), sr=self.sr, mono=True)
|
||||
spectrogram = librosa.stft(audio,
|
||||
n_fft=self.n_fft,
|
||||
hop_length=self.n_fft // 2,
|
||||
center=False)
|
||||
spectrogram = librosa.feature.melspectrogram(S=np.abs(spectrogram) ** 2,
|
||||
sr=sr,
|
||||
n_mels=self.n_mels,
|
||||
hop_length=self.hop_length)
|
||||
# prepare plot
|
||||
spectrogram = librosa.power_to_db(spectrogram, ref=np.max, top_db=None)
|
||||
return spectrogram
|
||||
|
||||
def mel_spec_to_img(self, spectrogram, out_path, size=227):
|
||||
# prepare plotting
|
||||
fig = plt.figure(frameon=False, tight_layout=False)
|
||||
fig.set_size_inches(1, 1)
|
||||
ax = plt.Axes(fig, [0., 0., 1., 1.])
|
||||
ax.set_axis_off()
|
||||
fig.add_axes(ax)
|
||||
|
||||
spectrogram_axes = librosa.display.specshow(spectrogram,
|
||||
hop_length=self.n_fft // 2,
|
||||
fmax=self.sr/2,
|
||||
sr=self.sr,
|
||||
cmap=self.cmap,
|
||||
y_axis='mel',
|
||||
x_axis='time')
|
||||
|
||||
fig.add_axes(spectrogram_axes, id='spectrogram')
|
||||
fig.savefig(out_path, format='jpg', dpi=size)
|
||||
plt.clf()
|
||||
plt.close()
|
||||
|
||||
def process_folder(self, folder_in, folder_out):
|
||||
wavs = folder_in.glob('*.wav')
|
||||
folder_out.mkdir(parents=True, exist_ok=True)
|
||||
for wav in tqdm(list(wavs)):
|
||||
self.process_audio(wav, folder_out)
|
||||
|
||||
if __name__ == '__main__':
|
||||
models = ['slider', 'pump', 'fan']
|
||||
model_ids = [0, 2, 4, 6]
|
||||
preprocessor = Preprocessor()
|
||||
for model in models:
|
||||
for model_id in model_ids:
|
||||
preprocessor.process_folder(Path(f'/home/robert/coding/audio_anomaly_detection/data/mimii/-6_dB_{model}/id_0{model_id}/normal'),
|
||||
Path(f'/home/robert/coding/audio_anomaly_detection/data/mimii/-6_dB_{model}/id_0{model_id}/normal/melspec_images/')
|
||||
)
|
||||
preprocessor.process_folder(Path(f'/home/robert/coding/audio_anomaly_detection/data/mimii/-6_dB_{model}/id_0{model_id}/abnormal'),
|
||||
Path(f'/home/robert/coding/audio_anomaly_detection/data/mimii/-6_dB_{model}/id_0{model_id}/abnormal/melspec_images/')
|
||||
)
|
||||
Reference in New Issue
Block a user